We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Biopsy Enabled by Focused Ultrasound and Microbubbles

By LabMedica International staff writers
Posted on 14 May 2018
Print article
Image: A brain tumor in a mouse that has been treated with green fluorescent protein-transduced glioblastoma cells (Photo courtesy of Washington University).
Image: A brain tumor in a mouse that has been treated with green fluorescent protein-transduced glioblastoma cells (Photo courtesy of Washington University).
A recent paper discussed the feasibility of using focused ultrasound in combination with microbubbles to generate the local release of mRNA from a glioblastoma tumor into the bloodstream for diagnosis of brain cancer by non-invasive liquid biopsy analysis.

Although blood-based liquid biopsies have emerged as a promising non-invasive method to detect biomarkers in various cancers, limited progress has been made for brain tumors. One major obstacle is the blood-brain barrier, which hinders efficient passage of tumor biomarkers into the peripheral circulation.

Investigators at Washington University (St. Louis, MO, USA) worked with a mouse glioblastoma tumor model to develop a method for bypassing the blood-brain barrier. They selected glioblastoma as the tumor model because it is the most frequent type of primary brain cancer in adults and is generally associated with a poor prognosis.

The investigators decided to combine focused ultrasound (FUS), a technique that employs ultrasonic energy to target tissues deep in the body without incisions or radiation, with microbubbles (bubbles smaller than one millimeter in diameter, but larger than one micrometer). Microbubbles that have been injected move through the circulatory system in a fashion similar to red blood cells. When the microbubbles reach the target organ, they rupture, generating minute holes in the blood-brain barrier that allow biomarkers from the brain tumor to pass through the barrier and enter the bloodstream.

The investigators used two glioblastoma tumor models (U87 and GL261), developed by intracranial injection of respective enhanced green fluorescent protein transduced glioblastoma cells. Some of the animals were treated by FUS in the presence of systemically injected microbubbles. Others received FUS with no microbubbles or microbubbles without FUS. The effect of treatment on plasma tumor-related mRNA levels was determined using quantitative polymerase chain reaction (qPCR).

The investigators wrote in the April 26, 2018, online edition of the journal Scientific Reports that tumor mRNA was only detectable in the FUS and microbubble-treated U87 mice and was undetectable in the control U87 mice. This finding was replicated in the GL261 mice. Levels of tumor mRNA were 1,500–4,800 fold higher in the FUS and microbubble-treated GL261 mice than that of the control mice for the three acoustic pressures.

"Once the blood-brain barrier is open, physicians can deliver drugs to the brain tumor," said senior author Dr. Hong Chen, professor of biomedical engineering at Washington University. "Physicians can also collect the blood and detect the expression level of biomarkers in the patient. It enables them to perform molecular characterizations of the brain tumor from a blood draw and guide the choice of treatment for individual patients. I see a clear path for the clinical translation of this technique. Blood-based liquid biopsies have been used in other cancers, but not in the brain. Our proposed technique may make it possible to perform a blood test for brain cancer patients."

Related Links:
Washington University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.