We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Review Article Summarizes Progress Towards Drug Development

By LabMedica International staff writers
Posted on 02 Apr 2018
Print article
Image: The binding site of the amino acid transporter inhibitor UCPH101 was resolved by X-ray crystallography and was located at a distance from the substrate-binding site. In the image, the substrate is shown in the center of the transporter, while the inhibitor is located between the translocation and scaffold domain of the transporter (lower right). The inhibitor glues the two domains together, thereby inhibiting transport (Photo courtesy of Dr. Stefan Broer).
Image: The binding site of the amino acid transporter inhibitor UCPH101 was resolved by X-ray crystallography and was located at a distance from the substrate-binding site. In the image, the substrate is shown in the center of the transporter, while the inhibitor is located between the translocation and scaffold domain of the transporter (lower right). The inhibitor glues the two domains together, thereby inhibiting transport (Photo courtesy of Dr. Stefan Broer).
A recent review article summarized the methods used to identify new inhibitors for amino acid transporters and outlined cell and organ function where these can be used to modulate, prevent, or to treat diseases.

Amino acids perform a variety of functions in cells and organisms, particularly in the synthesis of proteins, as energy metabolites, neurotransmitters, and precursors for many other molecules. Amino acid transport plays a key role in all these functions. Inhibition of amino acid transport is being pursued as a therapeutic strategy in several areas, such as diabetes and related metabolic disorders, neurological disorders, cancer, and stem cell biology. The role of amino acid transporters in these disorders and processes is well established, but the implementation of amino acid transporters as drug targets is still in its infancy. This is at least in part due to the underdeveloped pharmacology of this group of membrane proteins.

In a review article published in the March 20, 2018, online edition of the journal SLAS Discovery, Dr. Stefan Broer, professor of biochemistry and molecular biology at the Australian National University (Acton, Australian Capital Territory) discussed the demand for better inhibitors of amino acid transport processes and emphasized promising new strategies and targets for developing amino acid transporters as drug targets. Topics covered in the review included: (1) principles of transporter inhibition, (2) methods to identify transporter inhibitors (including scintillation proximity assays, biosensors, and mass spectrometry), and (3) the role of transporters in nutritional, neurological, and immune disorders as well as cancer.

Dr. Boer concluded the review by saying, "Recent advances in structural biology, membrane protein expression, and inhibitor screening methodology will see an increased number of improved and selective inhibitors of amino acid transporters that can serve as tool compounds for further studies."

Related Links:
Australian National University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.