We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Virtual Model Set to Boost Drug Development Efforts

By LabMedica International staff writers
Posted on 27 Mar 2018
Print article
Image: A novel technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans is based on a microfluidic platform that connects engineered tissues from up to 10 organs (Photo courtesy of Felice Frankel).
Image: A novel technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans is based on a microfluidic platform that connects engineered tissues from up to 10 organs (Photo courtesy of Felice Frankel).
A novel "physiome-on-a-chip" platform is expected to aid drug developers by combining several "organ-on-a-chip" nodes into an in vitro model of a functioning organism.

Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including three-dimensional matrices and microperfusion. To adapt MPS technology for purposes of drug development, investigators at the Massachusetts Institute of Technology (Cambridge, USA) developed a method to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms. Each MPS platform represented a different organ and was compatible with the quantitative study of a range of compounds, including lipophilic drugs.

The investigators adapted the physiome-on-a-chip platform from technology they had previously developed and commercialized through the biotechnology company CN BioInnovations (Welwyn Garden City, United Kingdom), The system incorporated several on-board pumps to control the flow of fluids between the "organs," on different nodes replicating the circulation of blood, immune cells, and proteins through the human body.

The investigators reported in the March 14, 2018, online edition of the journal Scientific Reports that they had created several versions of the chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each "organ" consisted of clusters of one million to two million cells.

"Animals do not represent people in all the facets that you need to develop drugs and understand disease," said senior author Dr. Linda Griffith, professor of biological and mechanical engineering at the Massachusetts Institute of Technology. "That is becoming more and more apparent as we look across all kinds of drugs. A lot of the time you do not see problems with a drug, particularly something that might be widely prescribed, until it goes on the market. Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic. With our chip, you can distribute a drug and then look for the effects on other tissues and measure the exposure and how it is metabolized."

"An advantage of our platform is that we can scale it up or down and accommodate a lot of different configurations," said Dr. Griffith. "I think the field is going to go through a transition where we start to get more information out of a three-organ or four-organ system, and it will start to become cost-competitive because the information you are getting is so much more valuable."

Related Links:
Massachusetts Institute of Technology
CN BioInnovations

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.