We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Drug Candidate Disrupts Mitochondrial Function in Melanoma Cells

By LabMedica International staff writers
Posted on 15 Jan 2018
Print article
Image: A slide culture of a Streptomyces species (Photo courtesy of Wikimedia Commons).
Image: A slide culture of a Streptomyces species (Photo courtesy of Wikimedia Commons).
The potential anticancer drug mensacarcin was shown to interfere with mitochondrial function while inducing apoptosis in melanoma cells.

Mensacarcin is a secondary metabolite (an organic compound that is not directly involved in the normal growth, development, or reproduction of an organism; unlike primary metabolites, absence of secondary metabolites does not result in immediate death of the organism) produced by the soil bacterium Streptomyces bottropensis.

Mensacarcin is a highly oxygenated polyketide that exhibits potent cytostatic properties in almost all cell lines of the [U.S.] National Cancer Institute (NCI)-60 cell line screen and relatively selective cytotoxicity against melanoma cells. Moreover, its low COMPARE correlations with known standard antitumor agents indicate a unique mechanism of action.

Since effective therapies for managing melanoma are limited, investigators at Oregon State University (Corvallis, USA) sought to investigate mensacarcin's unique cytostatic and cytotoxic effects and its mode of action.

The investigators reported in the December 27, 2017, online edition of the Journal of Biological Chemistry that mensacarcin activated caspase-3/7–dependent apoptotic pathways and induced cell death in melanoma cells. Upon mensacarcin exposure, SK-Mel-28 and SK-Mel-5 melanoma cells, which had the BRAFV600E mutation associated with drug resistance, showed characteristic chromatin condensation as well as distinct poly(ADP-ribose)polymerase-1 cleavage. Flow cytometry identified a large population of apoptotic melanoma cells, and single-cell electrophoresis indicated that mensacarcin caused genetic instability, a hallmark of early apoptosis.

To visualize mensacarcin's subcellular localization, the investigators synthesized a fluorescent mensacarcin probe that retained activity. The natural product probe was localized to mitochondria within 20 minutes of treatment. Live-cell bioenergetic flux analysis confirmed that mensacarcin disturbed energy production and mitochondrial function rapidly. The subcellular localization of the fluorescently labeled mensacarcin together with its unusual metabolic effects in melanoma cells provided evidence that mensacarcin targeted mitochondria.

"Mensacarcin has potent anticancer activity, with selectivity against melanoma cells," said senior author Dr. Sandra Loesgen, assistant professor of chemistry at Oregon State University. "It shows powerful anti-proliferative effects in all tested cancer cell lines in the U.S. Cancer Institute's cell line panel, but inhibition of cell growth is accompanied by fast progression into cell death in only a small number of cell lines, such as melanoma cells. The probe was localized to mitochondria within 20 minutes of treatment. The localization together with mensacarcin's unusual metabolic effects in melanoma cells provide evidence that mensacarcin targets mitochondria. Mensacarcin's unique mode of action indicates it might represent a promising lead for the development of new anticancer drugs."

Related Links:
Oregon State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.