We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Cross-linked Hydrogels Developed for 3D Printing

By LabMedica International staff writers
Posted on 08 Jan 2018
Print article
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
Image: A three-dimensional hydrogel construct fabricated through drop-on-drop multi-material bio-printing (Photo courtesy of Osaka University).
A team of Japanese biomedical engineers has developed a novel, enzyme-based three-dimensional printing method that enables in vitro growth of complex cellular structures.

Investigators at Osaka University (Japan) reported in the December 11, 2017, online edition of the journal Macromolecular Rapid Communications that they had developed a cytocompatible inkjet bio-printing approach that enabled the use of a variety of bio-inks to produce hydrogels with a wide range of characteristics.

Stabilization of bio-inks was obtained by using the enzyme horseradish peroxidase (HRP) to catalyze cross-linking within the hydrogel while consuming cytotoxic hydrogen peroxide (H2O2) in the process.

Three-dimensional cell-laden hydrogels were fabricated by the sequential dropping of a polymer-containing bio-ink that had been cross-linked through the enzymatic reaction and H2O2 onto droplets of another bio-ink that contained the polymer, HRP, and cells. The HRP in the second drop neutralized the H2O2 carried over in the first drop. This approach promoted adhesion of the biological ink droplets and allowed printing of complex biological structures. The approximately 95% viability of mouse fibroblasts enclosed in a bio-ink hydrogel consisting of gelatin and hyaluronic acid derivatives and subsequent elongation of the cells demonstrated the suitability of this three-dimensional printing approach.

"Advances in induced pluripotent stem cell technologies have made it possible for us to induce stem cells to differentiate in many different ways," said senior author Dr. Makoto Nakamura, professor of biochemical engineering at Osaka University. "Now we need new scaffolds so we can print and support these cells to move closer to achieving full three-dimensional printing of functional tissues. Our new approach is highly versatile and should help all groups working to this goal."

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.