We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Structure of Calcium Channel Protein May Lead to New CF Drugs

By LabMedica International staff writers
Posted on 26 Dec 2017
Print article
Image: A cryo-electron microscope. Cryo-EM provides near-atomic structural resolution without requirements for crystallization of the sample (Photo courtesy of Stanford University).
Image: A cryo-electron microscope. Cryo-EM provides near-atomic structural resolution without requirements for crystallization of the sample (Photo courtesy of Stanford University).
Cryo-electron microscope (cryo-EM) molecular structure analysis studies have revealed the mechanism of action of the calcium-activated chloride channel protein TMEM16A.

Cryo-EM is an analytical technique that provides near-atomic structural resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

The calcium-activated chloride channel TMEM16A is a ligand-gated anion channel that opens in response to an increase in intracellular Ca2+ concentration. The protein is broadly expressed and contributes to diverse physiological processes, including transepithelial chloride transport and the control of electrical signaling in smooth muscles and certain neurons. As a member of the TMEM16 (or anoctamin) family of membrane proteins, TMEM16A (Anoctamin-1 or ANO1) is closely related to similar proteins in other organisms that function as scramblases, which are enzymes that facilitate the bidirectional movement of lipids across membranes. The unusual functional diversity of the TMEM16 family and the relationship between two seemingly incompatible transport mechanisms has been the focus of recent investigations.

Investigators at the University of Zurich (Switzerland) used advanced cryo-EM technology to establish the structures of mouse TMEM16A at high resolution in the presence and absence of Ca2+.

They reported in the December 13, 2017, online edition of the journal Nature that these structures revealed the differences between ligand-bound and ligand-free states of the calcium-activated chloride channel, and when combined with functional experiments suggested a mechanism for gating. During activation, the binding of Ca2+ to a site located within the transmembrane domain, in the vicinity of the pore, altered the electrostatic properties of the ion conduction path and triggered a conformational rearrangement of an alpha-helix that came into physical contact with the bound ligand, and thereby directly coupled ligand binding and pore opening. This was process unique among channel proteins, but one that was presumably general for both functional branches of the TMEM16 family.

These findings described the underlying structures and functions of this channel protein and provided promising insights for developing drugs for the treatment of cystic fibrosis, which is an inherited, autosomal recessive disorder of the lungs caused by mutations in the chloride channel gene CTFR.

"The molecular architecture of this membrane protein is crucial for the targeted development of drugs for treating cystic fibrosis," said senior author Dr. Raimund Dutzler, professor of biochemistry at the University of Zurich. "Substances leading to the activation of the TMEM16A would compensate the defect in the secretion of chloride ions in the lung.”

Related Links:
University of Zurich

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.