We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Increased Genome Variance Found in Mitochondria DNA Study

By LabMedica International staff writers
Posted on 19 Dec 2017
Print article
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
A team of molecular biologists has developed a method for identification of genetic variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for the extremely high-resolution study of mitochondrial mutation dynamics.

Mitochondria have been implicated in several human diseases, including mitochondrial disorders, cardiac dysfunction, heart failure, and autism. The number of mitochondria in a cell can vary widely by organism, tissue, and cell type. For instance, red blood cells have no mitochondria, whereas liver cells can have more than 2000. Each mitochondrion is composed of compartments, comprising the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix that carry out specialized functions.

Investigators at the University of Pennsylvania (Philadelphia, USA) reported in the December 5, 2017, issue of the journal Cell Reports that they used a method for isolation and analysis of the genomic DNA from a single mitochondrion, without loss of its spatial origin within a cell, to investigate the nature of mitochondrial genome variation in human and mouse brain cells. The study considered multiple scales - from different cells in a single individual to different subcellular locations within a single cell.

Results revealed extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that was present in multiple mitochondria across cells. Heteroplasmy is the presence of more than one type of organellar genome (mitochondrial DNA or plastid DNA) within a cell or individual. It is an important factor in considering the severity of mitochondrial diseases. Since most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mitochondrial DNA, it is common for mutations to affect only some mitochondria, leaving most unaffected.

The data obtained during this study suggested that even in inbred strains of mice, there was a broad segregating mitochondrial variation, within and across individuals, resulting in a large variation in individual heteroplasmy load. Although the data were more limited, it was evident that human samples showed unusual levels of heteroplasmy arising from within single-mitochondrion polymorphism.

"By being able to look at a single mitochondrion and compare mutational dynamics between mitochondria, we will be able to gauge the risk for reaching a threshold for diseases associated with increasing numbers of mitochondrial mutations," said senior author Dr. James Eberwine, a professor of systems pharmacology and translational therapeutics at the University of Pennsylvania. "This roadmap of the location and number of mutations within the DNA of a mitochondrion and across all of a cell's mitochondria is where we need to start."

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.