We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Use of Niclosamide to Deactivate Cancer Stem Cells

By LabMedica International staff writers
Posted on 06 Dec 2017
Print article
Image: Researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread (Photo courtesy of Dr. Dipanjan Pan, University of Illinois).
Image: Researchers developed nanoparticles that can target cancer stem cells (yellow), the rare cells within a tumor (blue) that can cause cancer to recur or spread (Photo courtesy of Dr. Dipanjan Pan, University of Illinois).
Nanoparticles designed to selectively deliver the drug niclosamide to cancer stem cells caused the cancer stem cells to lose their stem-like properties and rendered them less able to cause recurrence or metastasis.

Cancer stem cells are known to be controlled by pathways that are dormant in normal adult cells. An example is PTEN, which is a negative regulator of the transcription factor STAT3. STAT3 regulates genes that are involved in stem cell self-renewal and thus represents a novel therapeutic target.

In order to manipulate STAT3 expression, investigators at the University of Illinois (Champaign-Urbana, USA) synthesized nanoparticles from a biocompatible polymer and coated them with antibodies directed at the CD44 protein, which only appears on the surface of cancer stem cells. The nanoparticles were loaded with the widely used anti-parasite drug niclosamide, which deactivates the STAT3 pathway.

Results published in the November 14, 2017, online edition of the journal Molecular Cancer Therapeutics revealed that treatment with the nanoparticles caused cancer stem cells in culture to lose their stem like properties, making them less able to cause the cancer to recur or metastasize. In addition, there was a significant decrease in overall cancer cell growth, both in the cell cultures and in mice.

"I call them "GPS-enabled nanoparticles," because they seek out only the cells that have cancer stem cell properties. Then they latch onto the cells and deliver the drug," said senior author Dr. Dipanjan Pan, professor of bioengineering at the University of Illinois. "To the best of our knowledge, this is the first demonstration of delivering cancer stem-cell-targeted therapy with a nanoparticle. We purposely used an extremely inexpensive drug. It is generic and we can mass produce it on a very large scale. The nanoparticles are a polymer that we can make on a large scale – it is highly defined and consistent, so we know exactly what we are delivering. The rest of the process is just self-assembly."

"It is critical to administer treatments for already-developed tumors; however, long-term survival and not allowing it to come back are equally important," said Dr. Pan. "We want to destroy the cells that are hidden in the tissue and cause the cancer to come back or spread to other parts of the body."

Related Links:
University of Illinois

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.