We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




CRISPR Tool Enables Genome Repair by Precise RNA Editing

By LabMedica International staff writers
Posted on 06 Nov 2017
Print article
Image: A Cas13a molecule pictured with an RNA molecule (Photo courtesy of Lauren Solomon, Broad Communications).
Image: A Cas13a molecule pictured with an RNA molecule (Photo courtesy of Lauren Solomon, Broad Communications).
The CRISPR/Cas9 gene-editing tool has been modified to act as a promising RNA editing platform with broad applicability for research, therapeutics, and biotechnology.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the Broad Institute (Cambridge, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) showed that a different CRISPR complex, CRISPR/Cas13a could be engineered for mammalian cell RNA knockdown and binding. To do this, the investigators engineered a Cas13 ortholog capable of robust knockdown and demonstrated RNA editing by using catalytically inactive Cas13 (dCas13) to direct adenosine to inosine deaminase activity via the enzyme ADAR2 to transcripts in mammalian cells.

Double-stranded RNA-specific adenosine deaminase is an enzyme that in humans is encoded by the ADAR (adenosine deaminase acting on RNA) gene. Adenosine deaminases acting on RNA (ADAR) are enzymes responsible for binding to double stranded RNA (dsRNA) and converting adenosine (A) to inosine (I) by deamination. As (I) is structurally similar to guanine (G), this induces (I) to (C) [cytosine] binding. The conversion from (A) to (I) disrupts the normal A:U pairing, which makes the RNA unstable. In both translation and replication (I) functions in a fashion similar to (G) in the RNA molecule.

Use of CRISPR\Cas13a enabled the investigators to develop a system, which they referred to as RNA Editing for Programmable A to I Replacement (REPAIR). This system, which had no strict sequence constraints, could be used to edit full-length transcripts containing pathogenic mutations. To demonstrate REPAIR's therapeutic potential, the investigators synthesized the pathogenic mutations that cause Fanconi anemia and X-linked nephrogenic diabetes insipidus, introduced them into human cells, and successfully corrected these mutations at the RNA level.

"The ability to correct disease-causing mutations is one of the primary goals of genome editing," said senior author Dr. Feng Zhang, professor of neuroscience at the Massachusetts Institute of Technology. "So far, we have gotten very good at inactivating genes, but actually recovering lost protein function is much more challenging. This new ability to edit RNA opens up more potential opportunities to recover that function and treat many diseases, in almost any kind of cell."

The CRISPR/Cas13-based REPAIR system was described in the October 25, 2017, online edition of the journal Science and the October 4, 2017, online edition of the journal Nature. The technology has been made freely available to researchers via the Zhang laboratory's page on the plasmid-sharing website Addgene.

Related Links:
Broad Institute
Massachusetts Institute of Technology
Addgene

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.