We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Staphylococcus Aureus Avoids Inducing Immune Memory in Model

By LabMedica International staff writers
Posted on 03 Oct 2017
Print article
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A team of medical microbiologists has identified the mechanism that prevents the body's immune system from developing an effective protective response to repeated Staphylococcus aureus infections.

Investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) sought to clarify why humans do not usually develop effective immunity to Staphylococcus aureus reinfection.

Toward this end, the investigators worked with a mouse model that mimicked human S. aureus infection. They reported in the September 21, 2017, online edition of the journal Cell Host & Microbe that infection by S. aureus caused the immune system to increase production of anti-inflammatory cytokines, specifically interleukin-10 (IL-10), while impairing the anti-pathogenic response from protective Th17 (T helper) cells.

At the mechanistic level they found that O-acetylation of peptidoglycan, a mechanism utilized by S. aureus to block bacterial cell wall breakdown, limited the induction of pro-inflammatory signals required for optimal Th17 polarization. Thus, the bacterial cell wall remained intact after infecting the host, and molecules from the pathogen did not escape to interact with the immune system and trigger the development of robust protective immune memory.

IL-10 deficiency in mice restored protective immunity to S. aureus infection. Using a staphylococcal peptidoglycan O-acetyltransferase mutant as adjuvant reduced IL-10, increased IL-1beta (an important mediator of the inflammatory response), and promoted development of IL-17-dependent, Th cell-transferable protective immunity.

"Essentially, staph tricks the body's T-cells, which are white blood cells that fight infection, and prevents them from mounting an effective defense," said contributing author Dr. Gislaine Martins, assistant professor of biomedical science and medicine at Cedars-Sinai Medical Center. "The study explains why our immune system is fooled by staph. Staph evolved to have this enzyme that makes this modification in its cell wall. This modification protects the wall from degradation and therefore from being properly detected by the immune system, which will not remember the bacteria the next time the body is infected."

Related Links:
Cedars-Sinai Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.