We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Horseradish Complex Increases Sensitivity of Immunochemical Assays

By LabMedica International staff writers
Posted on 01 Aug 2017
Print article
Image: Microscopy images taken of Zika-infected primate placenta samples that were stained to detect Zika by immunohistochemistry. The left image shows a sample treated with the EASE protocol, with red/orange colored signals of Zika infection clearly visible (white arrows). The right image shows a sample treated with a standard protocol, and Zika virus - though present - was not detected (Photo courtesy of the University of Washington).
Image: Microscopy images taken of Zika-infected primate placenta samples that were stained to detect Zika by immunohistochemistry. The left image shows a sample treated with the EASE protocol, with red/orange colored signals of Zika infection clearly visible (white arrows). The right image shows a sample treated with a standard protocol, and Zika virus - though present - was not detected (Photo courtesy of the University of Washington).
A new technique boosts the sensitivity of immunochemical reactions that rely on the enzyme horseradish peroxidase from 100 to 1,000 times.

This enhanced sensitivity is achieved by combining horseradish peroxidase (HRP), one of the most popular reporter enzymes in biology, with polydopamine (PDA), arguably the most versatile coating material for surface treatment.

Previously, a simple dip-coating protocol had been demonstrated for spontaneous formation of a thin self-adherent PDA film onto a wide range of surfaces. Recently, however, investigators at the University of Washington (Seattle, USA) found that when dopamine was used in place of the typical HRP substrates, its polymerization rate increased over 300-fold. HRP aggregated dopamine molecules to form the polydopamine polymer chain. Polydopamine, in turn, accumulated on the surfaces of reaction vessels such as microtiter wells, small Petri dishes, or nanoparticles. Once the polydopamine was present, traditional protocols were followed with substantially increased test sensitivity.

PDA has been well known for its outstanding reactivity to the amine, sulfhydryl, and phenol groups in proteins, enabling site-specific deposition in the vicinity of HRP and subsequent sensitive detection based on absorption or fluorescence. Details of this approach, which the investigators called EASE (enzyme-accelerated signal enhancement), were published in the June 5, 2017, online edition of the journal Nature Biomedical Engineering.

"Common bioassays are the real workhorses of laboratory experiments and medical tests," said senior author Dr. Xiaohu Gao, professor of bioengineering at the University of Washington. "By boosting the sensitivity of these tests, we can enable more accurate medical diagnoses earlier in a disease or condition, and enable more certainty and less waste in the research process. EASE has potential to solve real, long-standing problems in research and medical tests."

"Scientists have been trying to improve the accuracy of these common tests for decades, but solutions often involve entirely new protocols or costly pieces of equipment," said Dr. Gao. "Understandably, researchers can be reluctant to invest in unfamiliar protocols or expensive new equipment -- but EASE is a simple addition to tried-and-true assays. It is like a software upgrade, instead of changing your operating system."

Related Links:
University of Washington

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.