We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Gene Editing Restores Vision in Mouse RP Models

By LabMedica International staff writers
Posted on 04 May 2017
Print article
Image: A confocal micrograph of mouse retina depicting optic fiber layer (Photo courtesy of the National Center for Microscopy and Imaging Research, University of California, San Diego).
Image: A confocal micrograph of mouse retina depicting optic fiber layer (Photo courtesy of the National Center for Microscopy and Imaging Research, University of California, San Diego).
The CRISPR/Cas9 gene-editing tool was used to reprogram defective optical rod photoreceptor cells and transform them into functioning cone photoreceptors, which restored impaired vision in two mouse models of retinitis pigmentosa.

Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration. This disorder is characterized by the progressive loss of photoreceptor cells and may eventually lead to blindness. Mutations in a number of different genes have been found to cause the retinitis pigmentosa phenotype.

Investigators at the University of California, San Diego applied the CRISPR/Cas9 approach to the RP problem. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

The investigators reported in the April 21, 2017, online edition of the journal Cell Research that they had used adeno-associated virus (AAV) to deliver CRISPR/Cas9 to retinal cells. The effect of the gene-editing tool was to deactivate a master switch gene in the retina called Nrl (Neural retina-specific leucine zipper protein) and a downstream transcription factor called Nr2e3 (photoreceptor cell-specific nuclear receptor). Inactivation of these two proteins reprogrammed rod cells into cone-like photoreceptors, which rescued retinal rod and cone degeneration and restored visual function in two different mouse RP models.

"Cone cells are less vulnerable to the genetic mutations that cause RP," said senior author Dr. Kang Zhang, professor of ophthalmology at the University of California, San Diego. "Our strategy was to use gene therapy to make the underlying mutations irrelevant, resulting in the preservation of tissue and vision. Human clinical trials could be planned soon after completion of preclinical study. There is no treatment for RP so the need is great and pressing. In addition, our approach of reprogramming mutation-sensitive cells to mutation-resistant cells may have broader application to other human diseases, including cancer."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.