We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Statins Slow Growth of Cancers with p53 Structural Mutations

By LabMedica International staff writers
Posted on 08 Feb 2017
Print article
Image: Atorvastatin bound to HMG-CoA reductase (Photo courtesy of Wikimedia Commons).
Image: Atorvastatin bound to HMG-CoA reductase (Photo courtesy of Wikimedia Commons).
Cancer researchers have demonstrated the ability of cancer-lowering statin drugs to slow the growth of certain types of cancers with p53 mutations.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation, or if the p53 protein becomes inactivated. Investigators at the University of Kansas Medical Center looked for chemical compounds that could inhibit the activity of structurally mutated p53 proteins that can accelerate cancer progression, while not harming proteins produced by healthy p53 genes.

Toward this end, the investigators screened nearly 9,000 compounds - including 2,400 that were [U.S.] Food and Drug Administration-approved drugs – to identify any that might degrade mutant p53.

The investigators reported in the November 2016 issue of Nature Cell Biology that statins, cholesterol-lowering drugs such as Lipitor (atorvastatin), Crestor (rosuvastatin) and Mevacor (lovastatin), were degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. The statins impacted only structurally mutated (misfolded) p53, as opposed to p53 mutated at the site of DNA binding.

Statins act by competitively inhibiting the enzyme HMG-CoA reductase, the first committed enzyme of the mevalonate pathway. Because statins are similar in structure to HMG-CoA on a molecular level, they fit into the enzyme's active site and compete with the native substrate (HMG-CoA). This competition reduces the rate by which HMG-CoA reductase is able to produce mevalonate, the next molecule in the cascade that eventually produces cholesterol. By inhibiting HMG-CoA reductase, statins block the pathway for synthesizing cholesterol in the liver.

In the current study, the investigators found that specific reduction of mevalonate-5-phosphate by statins induced CHIP (C terminus of HSC70-Interacting Protein) ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutated p53 by impairing interaction of this protein with DNAJA1 (DNAJ heat shock protein family (Hsp40) member A1). DNAJA1 a member of the DNAJ family of proteins, which act as heat shock protein 70 co-chaperones. Heat shock proteins facilitate protein folding, trafficking, prevention of aggregation, and proteolytic degradation. Members of this family are characterized by a highly conserved N-terminal J domain, which mediates the interaction with heat shock protein 70 to recruit substrates and regulate ATP hydrolysis activity. Knockdown of DNAJA1 induced CHIP-mediated mutated p53 degradation, while its overexpression prevented statin-induced degradation of this protein.

In a study in which mice carrying human tumors expressing mutant p53, were treated with high doses of statins for 21 days, it was found that the tumors grew poorly in mice treated with statins compared to the controls, and that the statins worked only on structurally mutated p53, as opposed to p53 mutated at the site of DNA binding.

"We found that only the structural mutation is affected," said senior author Dr. Tomoo Iwakuma, associate professor of cancer biology at the University of Kansas Medical Center. "Which explains why clinical studies with statins were inconclusive. Mutant p53 makes human cancer cells more metastatic and resistant to chemotherapy. That is a primary reason to get rid of it -- to improve survival in cancer patients."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.