We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Neurite Outgrowth Stimulated by Blocking Acetylcholine Receptor

By LabMedica International staff writers
Posted on 31 Jan 2017
Print article
Image: A colorized scanning electron micrograph (SEM) depicting mitochondria, which play a critical role in peripheral nerve growth regeneration (Photo courtesy of Thomas Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego).
Image: A colorized scanning electron micrograph (SEM) depicting mitochondria, which play a critical role in peripheral nerve growth regeneration (Photo courtesy of Thomas Deerinck, National Center for Microscopy and Imaging Research, University of California, San Diego).
Neurosciences researchers have found that blocking the muscarinic acetylcholine type 1 receptor (M1R) in neurons promotes neurite outgrowth, which prevents or reverses peripheral neuropathy in cell and rodent models of type I and II diabetes, chemotherapy-induced neuropathy, and HIV.

A neurite refers to any projection from the cell body of a neuron. This projection can be either an axon or a dendrite. The term is frequently used when speaking of immature or developing neurons, especially of cells in culture, because it can be difficult to tell axons from dendrites before differentiation is complete.

A muscarinic receptor antagonist (MRA) is a type of anticholinergic agent that blocks the activity of the muscarinic acetylcholine receptor. Acetylcholine (ACh) is a neurotransmitter whose receptor is a protein found in synapses and other cell membranes. Investigators at the University of California, San Diego and their colleagues at the University of Manitoba have been seeking to determine the mechanism by which antimuscarinic compounds enhance neurite outgrowth and to translate findings into a therapeutic approach that could prevent or reverse peripheral neuropathy in a range of in vitro and in vivo models.

The investigators reported in the January 17, 2017, online edition of the Journal of Clinical Investigation that sensory neurons from mice lacking M1R exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural signs of sensory neuropathy. Blocking M1R using the specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK (5' adenosine monophosphate-activated protein kinase) and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy in diverse rodent models of diabetes.

“This is encouraging because the safety profile of anti-muscarinic drugs is well-characterized, with more than 20 years of clinical application for a variety of indications in Europe,” said senior author Dr. Paul Fernyhough, professor of pharmacology, therapeutics, and physiology at the University of Manitoba. “The novel therapeutic application of anti-muscarinic antagonists suggested by our studies could potentially translate relatively rapidly to clinical use.”

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.