We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Polypeptide Encoded by Non-Coding RNA Regulates Muscle Regeneration

By LabMedica International staff writers
Posted on 11 Jan 2017
Print article
Image: Long noncoding RNAs (lncRNAs), which extend longer than 200 nucleotides, have emerged as additional important players in the control of gene expression. They fine-tune the expression of numerous genes and direct the activity of complex regulatory pathways, often in a cell- and developmental-stage-specific manner (Photo courtesy of Julia Yellow).
Image: Long noncoding RNAs (lncRNAs), which extend longer than 200 nucleotides, have emerged as additional important players in the control of gene expression. They fine-tune the expression of numerous genes and direct the activity of complex regulatory pathways, often in a cell- and developmental-stage-specific manner (Photo courtesy of Julia Yellow).
Their name notwithstanding, long non-coding RNAs (lncRNAs) have been found to actually encode synthesis of small polypeptides that can fine-tune the activity of critical cellular components.

Long non-coding RNAs (lncRNAs) are considered to be non-protein coding transcripts longer than 200 nucleotides. This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. LncRNAs have been found to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors. Most lncRNAs are expressed only in a few cells rather than whole tissues, or they are expressed at very low levels, making them difficult to study.

Investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) reported in the December 26, 2016, online edition of the journal Nature that they had identified and functionally characterized a novel 90 amino acid polypeptide encoded by the lncRNA LINC00961. This polypeptide was found to be conserved between human and mouse, was localized to the late endosome/lysosome, and interacted with the lysosomal enzyme v-ATPase to negatively regulate mTORC1 (mammalian target of rapamycin complex 1) activation. The role of mTORC1 is to activate translation of proteins. The downregulation of mTORC1 by the lncRNA polypeptide was specific to activation of mTORC1 by amino acid stimulation, rather than by growth factors. Therefore they called this polypeptide "small regulatory polypeptide of amino acid response" or SPAR.

The investigators showed that the SPAR-encoding lncRNA was highly expressed in a subset of tissues and used CRISPR/Cas9 engineering to develop a SPAR-polypeptide-specific knockout mouse while maintaining expression of the host lncRNA. They found that the SPAR-encoding lncRNA was downregulated in skeletal muscle upon acute injury. Using this in vivo model, they established that SPAR downregulation enabled efficient activation of mTORC1 and promoted muscle regeneration.

"Whether such small, hidden polypeptides are actually functional, or represent "translational noise" within the cell is still relatively unclear," said senior author Dr. Pier Paolo Pandolfi, director of the cancer center and cancer research institute at Beth Israel Deaconess Medical Center. "Our team set about trying to understand to what extent lncRNA molecules might actually encode functional polypeptides, and how important such peptides might be."

"We are very excited about this discovery," said Dr. Pandolfi. "It represents a new and startling mechanism by which important sensory pathways can be regulated within cells, and we believe it will have important implications for how we approach the design of therapies and treatments in the future."

Related Links:
Beth Israel Deaconess Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.