We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




A MicroRNA Regulates the Mechanism That Prevents Osteoporosis and Bone Metastasis

By LabMedica International staff writers
Posted on 07 Jul 2014
Print article
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
Image: Osteoclast, with bone below it, shows typical distinguishing characteristics: a large cell with multiple nuclei and a “foamy” cytosol (Photo courtesy of Wikimedia Commons).
A study conducted on a mouse model of osteoporosis found that animals with higher than normal levels of the microRNA (miRNA) miR-34a were protected from the syndrome by having increased bone mass and reduced bone breakdown.

MiRNAs are fragments of RNA about 20 nucleotides long that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) have been studying how microRNAs were involved in regulating skeletal biology. To this end, they used mouse models that either underexpressed or overexpressed miR-34a.

They reported in the June 25, 2014, online edition of the journal Nature that miR-34a-overexpressing transgenic mice exhibited lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibited elevated bone resorption and reduced bone mass. At the cellular level it was found that miR-34a or molecules that mimicked the function of miR-34a blocked the development of osteoclasts (cells that cause destruction of bone), which make the bone less dense and prone to fracture. High levels of bone destruction and reduced bone density caused by excessive numbers of osteoclasts are characteristic of osteoporosis.

The investigators pointed out that the mechanisms involved in development of osteoporosis were similar to those that allow certain cancers to metastasize into bone tissue.

“This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone,” said senior author Dr. Yihong Wan, assistant professor of pharmacology at the University of Texas Southwestern Medical Center. “Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well.”

Related Links:

University of Texas Southwestern Medical Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.