We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Dislocated Enzyme Causes Hereditary Lysosomal Storage Disease

By LabMedica International staff writers
Posted on 03 Mar 2014
Print article
Image: In normal cells, phosphotransferase (green) is shown overlapping with the Golgi apparatus (red), which indicates that phosphotransferase is located in the Golgi, where it should be (Photo courtesy of Dr. Eline van Meel, Washington University School of Medicine).
Image: In normal cells, phosphotransferase (green) is shown overlapping with the Golgi apparatus (red), which indicates that phosphotransferase is located in the Golgi, where it should be (Photo courtesy of Dr. Eline van Meel, Washington University School of Medicine).
Image: In mutant cells, the protein phosphotransferase (green) is spread beyond the Golgi (red). Outside the Golgi, this wayward phosphotransferase is no longer able to perform its job of properly addressing enzymes bound for the lysosome (Photo courtesy of Dr. Eline van Meel, Washington University School of Medicine).
Image: In mutant cells, the protein phosphotransferase (green) is spread beyond the Golgi (red). Outside the Golgi, this wayward phosphotransferase is no longer able to perform its job of properly addressing enzymes bound for the lysosome (Photo courtesy of Dr. Eline van Meel, Washington University School of Medicine).
The molecular mechanism that underlies the hereditary lysosomal disorder mucolipidosis III has been traced to a mutation that causes a specific enzyme to leach out of the Golgi apparatus and into the cell where it is degraded by the lysosome or released into the medium.

Mucolipidosis III results from a deficiency of the enzyme N-acetylglucosamine-1-phosphotransferase, which phosphorylates target carbohydrate residues on N-linked glycoproteins. Without this phosphorylation, the glycoproteins are not shipped to the lysosomes, and they escape outside the cell. This rare disorder is characterized by skeletal and heart abnormalities, which can result in a shortened lifespan.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) reported in the February 18, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that the Golgi-localized enzyme normally mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases, and loss of this function results in impaired lysosomal targeting of these acid hydrolases and decreased lysosomal degradation.

They described two missense mutations in the N-terminal cytoplasmic tail of the alpha subunit of the phosphotransferase that impair retention of the catalytically active enzyme in the Golgi complex. This results in mistargeting of the mutant phosphotransferases to lysosomes, where they are degraded, or to the cell surface and release into the medium. As a result, children with this disorder have lysosomal proteins in their blood at levels 10 to 20 times higher than normal.

“Type III patients live into adulthood, but they are very impaired,” said senior author Dr. Stuart A. Kornfeld, professor of medicine at Washington University School of Medicine. “They have joint and heart problems and have trouble walking. In the most severe form, type II, there is zero activity of phosphotransferase. None of the 60 enzymes are properly tagged, so these patients’ lysosomes are empty. Children with type II usually die by age 10.”

“Under normal circumstances, the phosphotransferase moves up through the Golgi, but then it is recaptured and sent back,” said Dr. Kornfeld. “Our study shows that the mutant phosphotransferase moves up but is not recaptured. Ironically, the phosphotransferase that escapes the Golgi ends up in the lysosomes, where it is degraded. There is a lot of interest and study about how cells distribute proteins to the right parts of the cell. Our study has identified one of the few examples of a genetic disease caused by the misplacement of a protein. The protein functions just fine. It just does not stay in the right place. We think there must be some protein in the cell that recognizes phosphotransferase when it gets to the end of the Golgi, binds it and takes it back. Now we are trying to understand how that works.”

Related Links:

Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.