We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MicroRNA Treatment Prevents Breast Cancer in Mouse Model

By LabMedica International staff writers
Posted on 15 Jan 2014
Print article
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Image: Milk ducts in cancer-prone mice are packed with tumor cells (deep purple cells, shown by arrow), causing the ducts to grow fatter. However, milk ducts in mice treated with a gene-silencing nanoparticle remain mostly hollow (right, shown by arrows), like healthy ducts (Photo courtesy of Dr. Amy Brock, Harvard University Medical School).
Mice that had been genetically engineered to develop breast cancer were protected from the disease by injections of nanoparticles containing a specific microRNA (miRNA) directly into their milk ducts.

Investigators at Harvard University Medical School (Boston, MA, USA) were looking for biomarkers to better identify and treat breast lesions at the earliest possible stage of development. Working with transgenic C3(1)-SV40TAg mice, they used computational gene network modeling to identify the HoxA1 (Homeobox A1) protein as a putative driver of early mammary cancer progression. Previous studies had shown the HOXA1 gene was repressed by the microRNA miR-10a.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators hypothesized that the progression of breast cancer could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Initially, they found that silencing the HOXA1 gene in cultured mouse or human mammary tumor spheroids resulted in increased lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization.

When the HOXA1 gene was silenced in vivo via intraductal delivery of nanoparticles loaded with miRNA through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. These findings were published in the January 1, 2014, online edition of the journal Science Translational Medicine.

"The findings open up the possibility of someday treating patients who have a genetic propensity for cancer, which could change people's lives and alleviate great anxiety," said senior author Dr. Don Ingber, professor of vascular biology and bioengineering at Harvard University Medical School. "The idea would be start giving it early on and sustain treatment throughout life to prevent cancer development or progression."

"This work marks a milestone not just in breast cancer research, but in systems biology," said Dr. Ingber. "Combining computational, engineering, and biological approaches has led to a new way to identify drugs that prevent cancer development and progression."

Related Links:

Harvard University Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.