We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Schizophrenia Linked to Defects in the Brain's Autophagy Pathway

By LabMedica International staff writers
Posted on 09 Jan 2014
Print article
Image: A functional magnetic resonance image (fMRI) showing brain areas more active in controls than in schizophrenia patients during a working memory task. Schizophrenia has been linked to decreased autophagy and enhanced cell death (Photo courtesy of Wikimedia Commons).
Image: A functional magnetic resonance image (fMRI) showing brain areas more active in controls than in schizophrenia patients during a working memory task. Schizophrenia has been linked to decreased autophagy and enhanced cell death (Photo courtesy of Wikimedia Commons).
A recent paper has linked schizophrenia to inhibition of the cellular degradative process autophagy in the hippocampus segment of the brain.

Autophagy is a self-degradative cellular process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to nonapoptotic cell death. Autophagy can be either non-selective or selective in the removal of specific organelles, ribosomes, and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully understood. Several key proteins govern the autophagy pathway including beclin1 and microtubule associated protein 1 light chain 3 (LC3).

Currently there are no objective tests for schizophrenia, and its diagnosis is based on an assortment of reported symptoms. In studying the causes of the syndrome investigators at Tel Aviv University (Israel) looked at factors linked to other brain disorders such as Alzheimer's disease, where death of brain cells has been linked to defects in the autophagy pathway.

The investigators analyzed postmortem brain samples from schizophrenia patients. They reported in the December 24, 2013, online edition of the journal Molecular Psychiatry that there was a brain-specific reduction in beclin1 expression in the hippocampus of schizophrenia patients, not detected in peripheral lymphocytes. This was in contrast to the proteins activity-dependent neuroprotective protein (ADNP) and ADNP2, which showed significantly increased expression in lymphocytes from related patients. The increase in ADNP was associated with the initial stages of the disease, and might possibly be a compensatory effect in response to the decline in beclin1.

At the protein level, ADNP was found to co-immunoprecipitate with LC3 suggesting a direct association with the autophagy process and paving the path to novel targets for drug design.

"We discovered a new pathway that plays a part in schizophrenia," said senior author Dr. Illana Gozes, professor of neurosciences at Tel Aviv University. "By identifying and targeting the proteins known to be involved in the pathway, we may be able to diagnose and treat the disease in new and more effective ways. It is all about balance. Paucity in beclin 1 may lead to decreased autophagy and enhanced cell death. Our research suggests that normalizing beclin 1 levels in schizophrenia patients could restore balance and prevent harmful brain-cell death."

Related Links:
Tel Aviv University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.