We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microsystem Reduces Cost of Developing Ion Channel Drugs

By LabMedica International staff writers
Posted on 11 Dec 2013
Print article
Image: Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane (Photo courtesy of Wikimedia Commons).
Image: Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane (Photo courtesy of Wikimedia Commons).
The use of a microsystem that generates ion channels in a cell-free medium is expected to boost development of drugs that target these channels in the treatment of diseases such as cystic fibrosis, myasthenia gravis, and epilepsy.

The effect of drugs on ion channels is currently studied by electrophysiology, which measures an electric current across ion channel proteins. This, however, is a slow and expensive process that is carried out using ion channels in living cell membranes.

In a paper published in the October 18, 2013, online edition of the journal Analyst, investigators at the University of Southampton (United Kingdom) in collaboration with colleagues at the University of Quebec (Montreal, Canada) described the development of a cell-free expression mixture that allows ion channels to be inserted into stable artificial "cell membranes."

Results of the study showed that single-channel current measurements of the potassium channels KcsA and hERGS5–S6 could be obtained by direct insertion in interdroplet lipid bilayers from microliters of a cell-free expression medium.

"By putting the ion channel into an artificial membrane, we only have one type of channel, no living cells, and a relatively inexpensive method for testing for several of these types of channels at once," said senior author Dr. Maurits de Planque, lecturer in electronics and computer science at the University of Southampton. "Researchers have experimented with cell-free mixtures before, but they found that this method was not economical due to the amount of expensive biochemicals required. Our proposal to develop a new platform, which uses a couple of microliters instead of milliliters, will be a very cost-effective way of doing this, particularly when the produced channel is directly inserted in a membrane for drug testing."

Related Links:

University of Southampton
University of Quebec


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.