We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Diabetes Drug Fights Obesity While Controlling Glucose Metabolism

By LabMedica International staff writers
Posted on 11 Nov 2013
Print article
A synthetic peptide that targets receptors for the naturally occurring incretin hormones GLP-1 and GIP is being developed into a drug for the management of diseases associated with impaired glucose tolerance.

Incretins are a group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. They also inhibit glucagon release from the alpha cells of the Islets of Langerhans.

The two main candidate molecules that fulfill criteria for an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (also known as glucose-dependent insulinotropic polypeptide or GIP). Both GLP-1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4).

Investigators at Indiana University (Bloomington, USA) developed a "unimolecular dual incretin" derived from an intermixed peptide sequence from GLP-1 and GIP. They reported in the October 30, 2013, online edition of the journal Science Translational Medicine that this compound corrected two causal mechanisms of diabetes-linked obesity, i.e., adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. This superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans).

"The current study demonstrates clearly that combining GLP-1 and GIP can produce improved therapeutic effects," said contributing author Dr. Richard DiMarchi, professor of chemistry at Indiana University. "It achieved results comparable to those that resulted from a 10-fold higher dose of agents that target only GLP-1 receptors."

"The results demonstrate that GLP-1 and GIP, when built into a single molecule, provide synergistic activity to control glucose and lower body weight across a spectrum of animal models, including in human clinical experiments," said Dr. DiMarchi. "Currently approved drugs are quite effective, but they are insufficient in normalizing glucose, and they certainly do not cause much loss of body weight."

Clinical trials conducted by Roche (Basel, Switzerland) demonstrated a decrease in glucose levels beyond what would be expected from conventional treatment. However, the six-week trial was not of significant duration to provide definitive evidence about weight loss in humans.

Related Links:

Indiana University
Roche 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.