We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Histone Deacetylase Inhibitors Boost Parvovirus Cancer Killing Action

By LabMedica International staff writers
Posted on 28 Oct 2013
Print article
Image: Computer-generated representation of parvovirus H-1 (H-1PV) (Photo courtesy of Dr. Antonio Marchini, German Cancer Research Center).
Image: Computer-generated representation of parvovirus H-1 (H-1PV) (Photo courtesy of Dr. Antonio Marchini, German Cancer Research Center).
The anticancer action of parvoviruses can be dramatically improved by co-treating cancer cells with parvovirus and histone deacetylase inhibitors (HDACIs) such as valproic acid.

The rat parvovirus H-1PV has oncolytic and tumor-suppressive properties potentially exploitable in cancer therapy. This possibility is being explored by cancer researchers, and while results have been encouraging, they have found that it is necessary to improve the cancer-killing capability of the virus.

Towards this end, investigators at the German Cancer Research Center (Heidelberg) have sought drugs or drug combinations that would improve the ability of parvoviruses to kill cancer cells. In a paper published in the September 17, 2013, online edition of the journal EMBO Molecular Medicine they described the effect of the histone deacetylase inhibitor valproic acid (VPA) on the interaction between H-1PV and human cervical carcinoma and pancreatic carcinoma cell lines.

The investigators showed that co-treatment of cultures with the parvovirus and VPA boosted the ability of the virus to kill a range of human cervical carcinoma and pancreatic carcinoma cell lines by inducing oxidative stress, DNA damage, and apoptosis. Furthermore, in rat and mouse xenograft models, H-1PV/VPA co-treatment strongly inhibited tumor growth promoting complete tumor remission in all co-treated animals. In contrast, animals treated with the same virus dose without the drug displayed no regression, not even when a 20-times higher dose of viruses was administered.

At the molecular level, the investigators found that the parvovirus nonstructural protein NS1 modulated viral transcription and cytotoxicity, both of which were enhanced by VPA treatment. NS1 was acetylated at residues K85 and K257 and addition of VPA correlated with an enhanced rate of NS1 acetylation. In contrast, amino-acid substitution of the two acetylation sites strongly impaired NS1-mediated viral gene transcription, viral replication, and cytotoxicity. VPA induced hyper-acetylation of NS1, which converted the protein into a more active polypeptide.

"The synergistic effect of a combination of parvoviruses and valproic acid enables us to deliver both the viruses and the drug at low doses, which prevents severe side effects," said senior author Dr. Antonio Marchini, a principle investigator in virology at the German Cancer Research Center. "The results are encouraging us to carry out further tests of this combination therapy. We believe it has the potential to arrest tumor growth in severe cases of cancer. We obtained impressive results in preclinical trials with parvovirus H-1 in brain tumors. However, the oncolytic effect of the viruses is weaker in other cancers. Therefore, we are searching for ways to increase the therapeutic potential of the viruses."

Related Links:

German Cancer Research Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.