We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Brains Cells May Regenerate After Radiotherapy

By LabMedica International staff writers
Posted on 28 Aug 2013
Print article
Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. However, new research in lab mice suggests that neural stem cells, the body’s source of new brain cells, are resistant to radiation, and can be woken up from a hibernation-like state to reproduce and generate new cells able to migrate, replace damaged cells, and possibly restore lost function.

“Despite being hit hard by radiation, it turns out that neural stem cells are like the special forces, on standby waiting to be activated,” noted Alfredo Quiñones-Hinojosa, MD, a professor of neurosurgery at the Johns Hopkins University School of Medicine (Baltimore, MD, USA), and leader of a study described online in the journal Stem Cells. “Now we might figure out how to unleash the potential of these stem cells to repair human brain damage.”

The findings, Dr. Quiñones-Hinojosa reported, may have impact for not only for brain cancer patients, but also for people with progressive neurologic disorders such as multiple sclerosis (MS) and Parkinson’s disease (PD), in which cognitive functions worsen as the brain suffers permanent damage over time.

The researchers examined the impact of radiation on mouse neural stem cells by assessing the mice’s responses to a subsequent brain injury. To do the research, the researchers used a device designed and used only at Johns Hopkins that effectively simulates localized radiation used in human cancer therapy. Other technology, according to the scientists, uses too much radiation to precisely impersonate the clinical experience of brain cancer patients.

In the weeks after radiation, the researchers injected the mice with lysolecithin, a compound that caused brain damage by inducing a demyelinating brain lesion, much like that present in MS. They found that neural stem cells within the irradiated subventricular zone of the brain generated new cells, which rushed to the damaged site to rescue newly injured cells. One month later, the new cells had integrated into the demyelinated area where new myelin, the protein insulation that protects nerves, was being produced.

“These mice have brain damage, but that doesn’t mean it’s irreparable,” Dr. Quiñones-Hinojosa said. “This research is like detective work. We’re putting a lot of different clues together. This is another tiny piece of the puzzle. The brain has some innate capabilities to regenerate and we hope there is a way to take advantage of them. If we can let loose this potential in humans, we may be able to help them recover from radiation therapy, strokes, brain trauma, you name it.”

These findings may not be all good news, however. Neural stem cells have been linked to brain tumor development, Dr. Quiñones-Hinojosa stressed. The radiation resistance his research discovered, he noted, could clarify why glioblastoma, the most lethal and aggressive form of brain cancer, is so difficult to treat with radiation.

Related Links:

Johns Hopkins University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.