We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Inhibition of TGF-Beta Signaling Potential Treatment for Chronic Allergies

By LabMedica International staff writers
Posted on 08 Aug 2013
Print article
Image: Aberrant signaling by transforming growth factor-beta, or TGF-beta, may be responsible for disrupting the way immune cells respond to common foods and environmental allergens, leading to a wide range of allergic disorders, shows new research from Johns Hopkins (Photo courtesy of the [US] National Cancer Institute).
Image: Aberrant signaling by transforming growth factor-beta, or TGF-beta, may be responsible for disrupting the way immune cells respond to common foods and environmental allergens, leading to a wide range of allergic disorders, shows new research from Johns Hopkins (Photo courtesy of the [US] National Cancer Institute).
Mutations in the genes encoding receptor subunits for TGF-beta (transforming growth factor-beta), TGFBR1 and TGFBR2, have been linked to the development of allergic diseases, including asthma, food allergy, eczema, allergic rhinitis, and eosinophilic gastrointestinal disease.

To study the linkage between TGF-beta and allergy investigators at Johns Hopkins University (Baltimore, MD, USA) worked with a group of children aged 7 to 20 with Loeys–Dietz syndrome (LDS). Loeys–Dietz syndrome is a recently-discovered autosomal dominant genetic syndrome which has many features similar to Marfan syndrome, but which is caused by mutations in the genes encoding transforming growth factor-beta receptor 1 (TGFBR1) or 2 (TGFBR2).

The investigators reported in the July 24, 2013, issue of the journal Science Translational Medicine that patients with LDS were strongly predisposed to develop allergic diseases. The LDS patients exhibited elevated immunoglobulin E levels, eosinophil counts, and T helper 2 (TH2) cytokines in their plasma. They had an increased frequency of CD4+ T cells that expressed both Foxp3 and interleukin-13, but retained the ability to suppress effector T cell proliferation.

"Disruption in TGF-beta signaling does not simply nudge immune cells to misbehave but appears to singlehandedly unlock the very chain reaction that eventually leads to allergic disease," said senior investigator Dr. Harry C. Dietz, professor of genetic medicine at Johns Hopkins University.

Findings obtained during the course of this study highlight the potential therapeutic benefit of strategies that inhibit TGF-beta signaling in the treatment of chronic allergic disorders.

Related Links:

Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.