We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Converting Blood Cells into Therapeutic Approaches for Autoimmune Disease

By LabMedica International staff writers
Posted on 31 Jul 2013
Print article
Cells from one individual’s blood could be transformed into autoimmune diseases therapy, disorders such as rheumatoid arthritis and Crohn’s disease.

Chang Kim, a professor of comparative pathobiology at Purdue University (West Lafayette, IN, USA), has devised an application to direct the differentiation of T-cells. The technology employs naïve T-cells, immature cells from which all T-cells develop, and stimulates them to become suppressive T-cells that block the development of painful inflammation associated with autoimmune diseases.

Naïve T-cells can be collected from a patient’s blood, treated and then re-injected, according to Prof. Kim, who also is a university faculty scholar and member of Purdue’s Center for Cancer Research and Weldon School of Biomedical Engineering. “These cells are being directed to become a type of cell that is already present in our bodies, where a fine balance between inflammatory T-cells and suppressive T-cells is maintained,” he said. “We are just tipping the scales in favor of suppressive T-cells to reduce inflammation. Because of this there are none of the toxic side effects associated with many immune-suppressive drugs. In addition, cells from one's own body aren’t rejected and remain in the body much longer. Instead of taking a pill every day, this could lead to a treatment administered, for example, every six months.”

Autoimmune diseases occur when the immune system attacks one’s own body instead of fighting off infection from bacteria, viruses, and other foreign cells. An overactive immune system sends T-cells to healthy tissue and organs where they cause inflammation and tissue destruction.

Suppressive T-cells travel to regions of inflammation and inhibit the T-cells there without substantially reducing the number of T-cells in other areas of the body where they are needed for effective immune function, according to Dr. Kim. “Treatment with suppressive T-cells has the potential to be a much more precise and targeted regulation of immune function than what currently exists,” he said. “Treating autoimmune diseases without compromising a patient’s immune system has been a big problem in the field. We need to catch the thief without taking down the house, and this has that potential.”

Prof. Kim discovered that naïve T-cells cultured in the presence of the hormone progesterone can be induced to become suppressive T-cells. This project’s articles were published July 2013 in the Journal of Immunology and the European Journal of Immunology. The group also filed a patent based on this work.

Laboratory mice research showed that about 500,000 suppressive T-cells are needed to have an effect on inflammation, according to Prof. Kim. “More work needs to be done to determine the appropriate dosage of cells for a human patient, but the amount of blood many people regularly donate would likely yield multiple treatments,” he said.

In the next phase, Prof. Kim plans to explore at the molecular level how progesterone causes the cells to differentiate into suppressive T-cells and to discover the proteins and protein receptors involved. He stressed that a better determination of the molecular regulation of these cells could lead to a way to control their differentiation and function without using progesterone.

Related Links:

Purdue University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.