We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Hydrogels Assessed for Biomedical Uses

By LabMedica International staff writers
Posted on 16 Jul 2013
Print article
Image: Agar/PAM DN hydrogels show extraordinary mechanical and free-shapeable properties: (a) bending; (b) knotting; (c) compression; (d) (stretching); (e) hexagon; (f) teddy bear gel under compression; and (g) teddy bear gel after force release (Photo courtesy of Qiang Chen and Chao Zhao).
Image: Agar/PAM DN hydrogels show extraordinary mechanical and free-shapeable properties: (a) bending; (b) knotting; (c) compression; (d) (stretching); (e) hexagon; (f) teddy bear gel under compression; and (g) teddy bear gel after force release (Photo courtesy of Qiang Chen and Chao Zhao).
Scientists are studying hydrogel, a hydrophilic polymer chain with similar flexibility to natural tissue, for new biomedical uses.

Dr. Jie Zheng, associate professor of chemical and biomolecular engineering, and Dr. Robert Weiss, a professor and chair of polymer engineering at the University of Akron (OH, USA), are among the most recent to add to the mounting research of hydrogels, the gelatinous substance that, because of its toughness and plasticity, has several biomedical applications, including cartilage repair, implants for minimally invasive surgery and drug delivery.

Because, as Dr. Zheng reported, “all existing methods to prepare double-network hydrogels involve multiple-step processes, which are tedious and time-consuming.” Dr. Zheng and his team developed a simple, effective, and one-pot technique (in which reactions occur in one as opposed to several pots) to synthesize double-network hydrogels—that is, hydrogels composed of two networks of polymer chains, one rigid, the other ductile.

Dr. Zheng not only made the synthesis of these hydrogels more effective but also made the hydrogels tougher. Most hydrogels are weak and brittle, “suffering from low mechanical strength, poor toughness, and/or limited extensibility and recoverability,” Dr. Zheng remarked. His hydrogels, however, “exhibit high mechanical properties, excellent recoverable properties, and a unique, free-shapeable property,” he stated, making them potential replacements for load-bearing soft tissues such as muscle, cartilage, tendon, and blood vessels.

Dr. Weiss also has synthesized a more resilient brand of hydrogel, a shape memory hydrogel, which can be curved and stretched and fixed into temporary shapes. When exposed to an external stimulus, such as temperature, light, moisture, or an electric field, shape memory polymers recover their original, permanent shape.

Dr.Weiss’s shape memory hydrogels are thermally actuated, so that they stretch and change shape when heated, and they retain this temporary shape when cooled. Biocompatible, shape memory hydrogels have the potential to be used for minimally invasive surgery and drug delivery, Dr. Weiss noted. “Shape memory may be useful for deployment of hydrogels in biomedical applications using less invasive methods ... for example, one can implant a compact form of the device that would deploy into the usable shape after it is implanted,” he said.

A small form of the shape memory hydrogel may be inserted into the body, for instance, where, upon absorbing bodily fluids, it expands into the chosen shape of the implant, thereby filling a wound or replacing tissue. The permeable hydrogels can also be packed with drugs and positioned into the body, where the sponge-like gel biodegrades and releases the drugs from its pores.

The researchers published their findings January 7, 2013, in the journal ACS Macro Letters. Dr. Zheng’s application has received provisional approval for a patent, and his article, coauthored by Zheng and his UA research colleagues, Drs. Qiang Chen, Lin Zhu, Chao Zhao, and Qiuming Wang, was published June 14, 2013, online in the journal Advanced Materials.

Related Links:

University of Akron


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.