We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Partnership Established to Probe the Inner Workings of Colon Cancer

By LabMedica International staff writers
Posted on 01 Jul 2013
Print article
Image: Eearly stage colon cancer using GE’s cancer mapping technology (Photo courtesy of GE).
Image: Eearly stage colon cancer using GE’s cancer mapping technology (Photo courtesy of GE).
New cancer mapping technology has been designed to provide a more detailed study of cancer cells and may provide better clues into how colon cancer develops, progresses, and how it can be curbed.

Vanderbilt University (Nashville, TN, USA) is collaborating with GE Global Research (Niskayuna, NY, USA), the technology development arm for the General Electric Co. (Fairfield, CT, USA), to better define, at the cellular level, how colon tumors form and develop.

Supported by a five-year, USD 3.75 million grant from the Office of the Director of the National Institutes of Health (NIH; Bethesda, MD, USA), the research will evaluate GE’s innovative cancer mapping technology, an automated platform that can probe and analyze up to 60 different disease markers, including proteins and messenger RNAs, in a single tissue sample. The capability to examine dozens of markers at one time provides a more complete outlook of the actual mechanisms of cancer. Currently, a diagnosis of cancer and the choice of which therapy to prescribe are based on the histology of the tumor, and in some cases, the expression of just one or two disease markers inside a patient’s tumor.

The GE-Vanderbilt project, led by GE scientists Michael Gerdes, PhD and Kashan Shaikh, PhD, and Robert Coffey, MD, a professor of cancer research at Vanderbilt, will examine how intestinal stem cells of the colon contribute to tumor formation and progression, and the signaling pathways associated with the disease.

“With GE’s cancer mapping technology, we’re enabling cancer to be viewed in ways it couldn’t previously be seen such as with the activation of different signaling pathways in specific cells,” said Prof. Gerdes, lead scientist at GE Global Research. “With unprecedented views, we hope will come unprecedented insights that tell us more about how cancer forms, how it progresses, and most importantly, how to defeat it.”

GE scientists have developed cutting-edge technology that allows a single tissue section from a sample that is removed during surgery, to be imaged for biosignatures including expression of dozens of proteins and nucleic acids (RNA and DNA) without destroying the integrity of the sample. “As we have learned, no two patient’s cancer is exactly the same. With colon cancer, some patients exhibit a more aggressive form of the disease compared to other patients,” said John Burczak, advanced technology leader in molecular imaging at GE Global Research. “We want to understand these subtleties, so that one day therapies can even be specifically tailored for each patient.”

Dr. Gerdes added that the goal is to identify “the mechanisms that drive the aggressive nature of the cancer, and the role that cancer stem cells play in therapeutic resistance.”

A major problem in cancer diagnosis is the limited amount of molecular data that is available about a specific cancer. With little information, it is difficult to determine more specific characteristics of cancer that could reveal how fast or gradually it may be growing. New breakthroughs in molecular diagnostics are beginning to change this pattern.

GE’s cancer mapping technology will be tested with investigators at Vanderbilt from the Epithelial Biology Center that Prof. Coffey directs. The Coffey lab recently reported the discovery of a new population of relatively quiescent (inactive) intestinal stem cells. These cells express a protein called Lrig1 that acts as a tumor suppressor. This discovery has “given us an entrée to develop some very robust models of colon cancer,” Prof. Coffey said.

GE Global Research is the hub of technology development for all of GE’s businesses. The company has locations in Niskayuna, NY, USA; San Ramon, CA, USA; Bangalore, India; Shanghai, China; Munich, Germany; and Rio de Janeiro, Brazil.

Related Links:

Vanderbilt University
GE Global Research


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.