We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Tumors Benefit from Molecular Switch That Blocks T-cell Interferon Production

By LabMedica International staff writers
Posted on 26 Jun 2013
Print article
A molecular switch causes immune system T-cells to convert from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, a change that inhibits the production of the inflammatory cytokine interferon gamma.

The move from OXPHOS to aerobic glycolysis is a hallmark of T-cell activation and was thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells would adopt this less efficient way to produce energy, especially in an oxygen-rich environment, has been a mystery.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) studied the role of the known molecular switch GAPDH glyceraldehyde 3-phosphate dehydrogenase) in the conversion of T-cells from OXPHOS to aerobic glycolysis.

GAPDH is an enzyme of approximately 37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. As its name indicates, GAPDH catalyzes the conversion of glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate. This conversion occurs in the cytosol of the cell in two coupled steps. The first is favorable and allows the second unfavorable step to occur. In addition to this long established metabolic function, GAPDH has recently been implicated in several nonmetabolic processes, including transcription activation, initiation of apoptosis, and ER to Golgi vesicle shuttling.

The investigators reported in the June 6, 2013, issue of the journal Cell that aerobic glycolysis was specifically required for effector function in T-cells but that this pathway was not necessary for proliferation or survival. When activated T-cells were provided with co-stimulation and growth factors but were blocked from engaging glycolysis, their ability to produce interferon gamma was markedly compromised. This defect was translational and was regulated by the binding of GAPDH to interferon gamma mRNA.

"The proteins involved in glycolysis do not just disappear when glycolysis is turned off—they are pretty stable proteins, so they can hang around in the cell and participate in other processes," said senior author Dr. Erika Pearce, assistant professor of pathology and immunology at the Washington University School of Medicine. "In T-cells this can be a problem since one of these proteins, GAPDH, can inhibit the production of interferon gamma. It is like an on-off switch, and all we need to do to flip it is change the availability of sugar. T-cells often can go everywhere—tumors, inflammation, infections—but sometimes they do not do anything. If we can confirm that this same switch is involved in these failures in the body, we might be able to find a way to put the fight back into those T-cells."

"T-cells can get into tumors, but unfortunately they are often ineffective at killing the cancer cells," said Dr. Pearce. "Lack of the ability to make interferon gamma could be one reason why they fail to kill tumors. By understanding more about how sugar metabolism affects interferon production, we may be able to develop treatments that fight tumors by enhancing T-cell function."

Related Links:
Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.