We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Drug Interferes with Androgen Receptors and Blocks Prostate Cancer Growth

By LabMedica International staff writers
Posted on 14 Jun 2013
Print article
Image: Contributing author Dr. Jung-Mo Ahn (Photo courtesy of the University of Texas at Dallas).
Image: Contributing author Dr. Jung-Mo Ahn (Photo courtesy of the University of Texas at Dallas).
A novel, small molecule peptidomimetic drug called D2 interferes with the function of androgen receptors, blocking the androgen-induced proliferation of prostate cancer cells in vitro and inhibiting tumor growth in a mouse xenograft model.

A peptidomimetic is a small protein-like chain designed to mimic a peptide. These molecules typically arise either from modification of an existing peptide, or by designing similar molecules that mimic peptides, such as peptoids and beta-peptides. The altered chemical structure is designed to advantageously adjust molecular properties such as stability or biological activity. These modifications involve changes to the peptide that will not occur naturally (such as altered backbones or the incorporation of non-natural amino acids).

Investigators at the University of Texas (Dallas, USA) and colleagues at the University of Texas Southwestern Medical Center (Dallas, USA) used computer-assisted molecular modeling techniques to design a helix-mimicking small molecule that could bind selectively to a pocket on the androgen receptor associated with prostate cancer.

They reported in the May 28, 2013, online edition of the journal Nature Communications that this molecule, D2, blocked androgen-induced nuclear uptake and genomic activity of the androgen receptor. Furthermore, D2 abrogated androgen-induced proliferation of prostate cancer cells in vitro, and inhibited tumor growth in a mouse xenograft model. D2 also disrupted androgen receptor–coregulator interactions in ex vivo cultures of primary human prostate tumors. D2 was found to be stable, nontoxic, and efficiently taken up by prostate cancer cells.

"When a tumor is trying to grow, activation of this location provides what the tumor needs," said contributing author Dr. Jung-Mo Ahn, associate professor of chemistry at the University of Texas. "There are other surfaces on the androgen receptor that are free to continue working with their respective proteins and to continue functioning. We sought to block only one set of interactions that contribute to prostate cancer growth. That is why we thought our approach might lead to potent efficacy with fewer side effects."

"We have shown that our molecule binds very tightly, targeting the androgen receptor with very high affinity," said Dr. Ahn. "We also have confirmed that it inhibits androgen function in these cells, which is a promising finding for drug development. We showed that it does work through these mechanisms, and it is as effective in inhibiting the proliferation of prostate cancer cells as other compounds currently in clinical trials."


Related Links:

University of Texas

University of Texas Southwestern Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.