We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




T-cells Derived from Human Embryonic Stem Cells May Prevent Graft Rejection

By LabMedica International staff writers
Posted on 29 May 2013
Print article
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Senior author Dr. Matthias Hebrok (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
Image: Contributing author Dr. Mark Anderson (Photo courtesy of the University of California, San Francisco).
A recent paper described the development of a method for using human embryonic stem cells (hESCs) to generate fully functional thymus tissue capable of supporting T-cell development and proliferation.

Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T-cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited.

Investigators at the University of California, San Francisco (USA) developed a new method for directing differentiation of hESCs into thymic epithelial progenitors (TEPs), cells that mature into TECs. The in vitro method was based on the precise chronological regulation of several signaling factors including TGF-beta (transforming growth factor-beta), BMP4 (bone morphogenetic protein 4), Wnt (wingless-type MMTV integration site family), Shh (sonic hedgehog), and FGF (fibroblast growth factor).

Timing the activation of these signaling factors was critical. "If we used one factor for a day longer or shorter it would not work," said senior author Dr. Matthias Hebrok, professor of diabetes research at the University of California, San Francisco. "It would be like driving down the highway and missing your exit."

Results published in the May 16, 2013, online edition of the journal Cell Stem Cell revealed that the hESC-derived TEPs matured into functional TECs that supported T-cell development upon transplantation into thymus-deficient mice. Furthermore, the engrafted TEPs produced T-cells capable of in vitro proliferation as well as in vivo immune responses.

"The thymus is an environment in which T-cells mature, and where they also are instructed on the difference between self and nonself," said contributing author Dr. Mark Anderson, professor of medicine at the University of California, San Francisco. "Some T cells are prepared by the thymus to attack foreign invaders—including transplants, while T cells that would attack our own tissues normally are eliminated in the thymus."

The protocol described in this study prompted only about 15% of hESCs to differentiate into functional thymus tissue. Even so, Dr. Anderson said, "We now have developed a tool that allows us to modulate the immune system in a manner that we never had before."

Related Links:
University of California, San Francisco


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.