We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Molecular Switch That Controls Formation of Bacterial Biofilms Identified and Characterized

By LabMedica International staff writers
Posted on 06 May 2013
Print article
Researchers studying the molecular mechanism that induces free-living bacteria to adhere together in a biofilm have identified the SinR gene as the master regulator of this transformation.

Biofilms have been found to be involved in a wide variety of microbial infections in the body, by one estimate 80% of all infections. Infectious processes in which biofilms have been implicated include common problems such as urinary tract infections, catheter infections, middle-ear infections, formation of dental plaque, gingivitis, coating contact lenses, and less common but more lethal processes such as endocarditis, infections in cystic fibrosis, and infections of permanent indwelling devices such as joint prostheses and heart valves. More recently, it has been noted that bacterial biofilms may impair cutaneous wound healing and reduce topical antibacterial efficiency in healing or treating infected skin wounds.

Bacteria living in a biofilm usually have significantly different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment is increased resistance to detergents and antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community. In some cases, antibiotic resistance can be increased by more than a thousand times.

Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or nonspecific attachment sites on a surface, nutritional cues, or in some cases, by exposure of free-living planktonic cells to subinhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Investigators at Newcastle University (United Kingdom) examined the mode of action of the SinR gene in the Gram-positive model organism Bacillus subtilis. They reported in the April 12, 2013, issue of the Journal of Biological Chemistry that the activity of SinR was controlled by its antagonists, SinI, SlrA, and SlrR. The interaction of these four proteins formed a switch, which determined whether SinR could inhibit biofilm formation by its repression of a number of extracellular matrix-associated operons.

To determine the thermodynamic and kinetic parameters governing the protein-protein and protein-DNA interactions at the heart of this molecular switch, the investigators analyzed the protein-protein and protein-DNA interactions by isothermal titration calorimetry and surface plasmon resonance. They also determined the crystal structure of SinR in complex with DNA, which revealed the molecular basis of base-specific DNA recognition by SinR and suggested that the most effective means of transcriptional control occurred by the looping of promoter DNA.

Senior author Dr. Richard Lewis, professor of structural biology at Newcastle University, said, “SinR is a bit like a rocker switch—a domestic light switch, for instance. In the "down" position, when SinR is bound to DNA, the proteins required to make a biofilm are turned off and the bacteria are free to move. In the "up" position, SinR is no longer bound to DNA and instead interacts with other proteins, and the biofilms genes are turned on.”

Related Links:

Newcastle University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.