We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Prospective Antidementia Drug Improves Brain Function

By LabMedica International staff writers
Posted on 15 Oct 2012
Print article
A new antidementia drug candidate has been found to be highly active in creating new neuronal connections and improving the cognitive function of rats with Alzheimer’s-like mental impairment.

Researchers at Washington State University (WSU; Pullman, WA, USA) have developed a new compound, named Dihexa, designed to repair damage that has already occurred and thereby recover lost brain function. This is a significant departure from current treatments for diseases such as Alzheimer’s, treatments that only slow the process of cell death or inhibit the neurotransmitter cholinesterase. Also, the Pharmaceutical Research and Manufacturers of America (PhRMA) reported that only 3 of 104 possible treatments have been approved in the past 13 years, a 34 to 1 ratio of setbacks to successes.

Joe Harding, professor at the WSU College of Veterinary Medicine, Jay Wright, professor at the WSU College of Arts and Sciences, and other WSU colleagues, reported their findings on October 10, 2012, in the early online section of the Journal of Pharmacology and Experimental Therapeutics. Prof. Harding designed a smaller version of the peptide angiotensin IV. Unlike the original peptide and early candidate molecules based on it, the new analog, Dihexa, was found to be both stable and able to cross the blood-brain barrier. It can also move from the gut into the blood and so could be taken orally in pill form.

The WSU team tested Dihexa on several dozen rats treated with scopolamine. Typically, a rat treated with scopolamine will not learn the location of a submerged platform in a water tank, orienting with cues outside the tank. After receiving Dihexa, all rats learned the task whether receiving the drug orally, by injection, or directly into the brain. Similar results were observed where a smaller group of old rats performed like young rats after treatment; however, while these results were statistically valid, studies with larger test groups will be needed to check the finding.

The "gold standard” compound for creating neuronal connections is brain-derived neurotrophic factor (BDNF). In bench assays using living nerve cells to monitor new neuronal connections, Dihexa was seven orders of magnitude more powerful than BDNF, which itself has yet to be effectively developed for therapeutic use. "We quickly found out that this molecule was [very highly] active,” said Prof. Harding. These results further suggest that Dihexa or molecules like it may also have applications for other neurodegenerative diseases or brain traumas where neuronal connections are lost. Development of Dihexa for human use will begin after safety testing and US Food and Drug Administration approval is obtained for clinical trials.

Related Links:

Washington State University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.