We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




More Effective DNA Fragment Separation Achieved, Leading to Improved Analysis

By LabMedica International staff writers
Posted on 30 Sep 2010
Print article
DNA analysis is poised to experience a considerable advancement due to the research of a chemical engineer who has found a way to achieve more effective separation of DNA fragments.

Working with a widely used gelatin substance known as a hydrogel, Dr. Victor M. Ugaz, associate professor in the Artie McFerrin department of chemical engineering at Texas A&M University (College Station, USA), and graduate student Nan Shi have been able to determine the specific type of conditions that result in the optimum gel pore structure for separation of a wide range of DNA fragment sizes. Their findings appear in the September 3, 2010, edition of the journal Physical Review Letters.

"It changes the way you think about the entire process because these findings demonstrate a rational way to connect the pore structure of the gel quantitatively to the mechanism by which the DNA moves through the gel,” Dr. Ugaz explained. "Researchers can now actually design gels to specifically harness certain effects, and they will need this information we have found to do that.”

The enhanced separation technique, Dr. Ugaz noted, could benefit a wide range of fields that utilize DNA analysis, including biomedical research, forensics, and genetic engineering. Key to Dr. Ugaz's findings is the way in which DNA fragments move through a hydrogel. Utilizing a process called electrophoresis, researchers who study DNA typically embed negatively charged DNA into a porous hydrogel. They then apply an electric field, which causes the DNA fragments to move through the pores of the hydrogel. Naturally, smaller DNA chains move faster through the labyrinth of pores than longer strands of DNA.

However, when DNA chains about the same size as the pores through which they are attempting to pass, a process called "entropic trapping” takes place, Dr. Ugaz noted. During this process, the naturally coiled DNA fragment, in a sense, has to unthread a bit to pass through a pore. Because the fragment wants to return to its coiled shape, it quickly squeezes through the smaller pore so that it can enter a larger pore where there is enough room for it to return to its natural shape.

Expoliting this entropic trapping effect for separation through a hydrogel marks a significant advancement in DNA studies, according to Dr. Ugaz. Although it has long been predicted that entropic trapping effects can potentially benefit a wide variety of applications including separation technologies, actually figuring out how to use this phenomenon previously has been difficult in hydrogels because it has not been clear how this transport mechanism is linked to the gel's porous structure, Dr. Ugaz explained.

In other words, hydrogels need to have very specific characteristics such as pore size distribution, and prior to these findings, there has been no way to determine how to choose the appropriate hydrogel that has the right properties, Dr. Ugaz noted. "You want to be able to detect the smallest possible difference in size between DNA fragments. The size of the fragments may be very close, and you may need to detect a difference of one unit in size. To do this, you would want to be able to specifically construct a hydrogel with the necessary pore structure to achieve this.”

Dr. Ugaz reported that this research provided the "instructions on how to do just that. We have a better picture of how to do this than what has existed. We know what the gel needs to look like and how it needs to be prepared. We're able to understand how to construct a gel that would allow DNA to move via an entropic trapping method that enhances separation performance and in turn leads to more effective analysis. This finding could have enormous implications by helping remove current barriers to separation efficiency.”

Related Links:
Texas A&M University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.