We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




High-Throughput Sequencing Technology Used for High-Resolution HLA Genotyping

By LabMedica International staff writers
Posted on 24 Nov 2009
Print article
New high-throughput sequencing technology has been developed to perform out high-resolution human leukocyte antigen (HLA) genotyping in research samples. The results of the study have important implications for future research on a wide variety of human diseases and tissue transplantation.

The study was published in October 2009 in the journal Tissue Antigens and reported that researchers at Roche Molecular Systems (Pleasanton, CA, USA) have used high-throughput sequencing technology from 454 Life Sciences (Branford, CT, USA), which is a Roche Company. In the study, the researchers performed ultra-deep amplicon sequencing of specific HLA class I and II gene loci with the Genome Sequencer FLX system and successfully assigned allele-level genotypes using software developed by Conexio Genomics (Perth, Australia).

HLA class I and class II genes play a vital role in the adaptive immune response. Importantly, they encode for the cell-surface proteins responsible for differentiating between self, non-self cells and other antigens. For example, accurate HLA genotyping is clinically important for hematopoetic stem cell (HSC) transplantation between unrelated donors and recipients to minimize the risk of graft rejection and graft versus host disease (GVHD). Accurate HLA genotyping is also critically important for research on many human diseases. "Specific alleles and haplotypes at the class I and class II loci are strongly associated with a variety of autoimmune disease as well as some cancers and infectious diseases,” explained Henry Erlich, study author and director of the department of human genetics at Roche Molecular Systems. "High-resolution, high-throughput HLA typing will be very valuable in these large research association studies.”

Accurate HLA genotyping is complicated by the highly polymorphic nature of this genomic region. There are hundreds of different allele sequences at the various HLA class I and class II genes. Current techniques, based on Sanger-sequencing technology, are limited in their ability to resolve "phase ambiguities,” which occurs typically, when an individual is heterozygous at many positions that are very close to one another.

"The challenge is to determine which polymorphic sequences go together on which alleles,” explained Mr. Erlich. "In our research, we were able to successfully assign allele-level HLA genotypes at eight loci in 48 individual samples from the data produced in a single Genome Sequencer FLX system run. The abundance of long sequencing reads allowed us to unambiguously assign HLA alleles in a much faster and more cost efficient manner than with traditional technologies. We were also able to detect rare variants, such as the nontransmitted maternal allele in a SCIDS [Severe Combined Immunodeficiency Syndrome] sample, reflecting the presence of maternal cells in the subject's circulation.”

In October 2009, 454 Life Sciences launched the latest GS FLX Titanium kits and software, offering increases in read length and throughput for amplicon sequencing. The new kits will improve targeting resequencing studies, such as HLA class I and II genotyping, by more completely covering loci with fewer amplicons and enhancing sensitivity for identifying rare variants and haplotypes. "Our early work with the GS FLX Titanium amplicon sequencing kits have demonstrated that we can now type more individuals per run and more exons per amplification reaction,” said Mr. Erlich.

"As proven by this study, 454 Sequencing Systems provides a cost-effective and reliable alternative to current research methods for HLA typing,” said Christopher McLeod, president and CEO of 454 Life Sciences. "This will only improve with the longer read lengths available in our latest series of GS FLX Titanium kits and software.”

Related Links:
Roche Molecular Systems
454 Life Sciences
Conexio Genomics

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.