Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Medical Implant Device Reduces Alzheimer’s Pathology and Provides Passive Immunization

By BiotechDaily International staff writers
Posted on 03 Apr 2016
Image: Schematic representation of implant for passive immunization by long-term therapeutic antibody delivery. Cells genetically engineered to produce a therapeutic antibody are confined in a macroencapsulation “flat sheet” device and implanted in the subcutaneous tissue for in vivo antibody secretion into the bloodstream. Antibodies reaching the brain target, clear, and prevent the harmful amyloid-beta protein plaques of Alzheimer’s disease (Photo courtesy of Lathuilière A et al, 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Schematic representation of implant for passive immunization by long-term therapeutic antibody delivery. Cells genetically engineered to produce a therapeutic antibody are confined in a macroencapsulation “flat sheet” device and implanted in the subcutaneous tissue for in vivo antibody secretion into the bloodstream. Antibodies reaching the brain target, clear, and prevent the harmful amyloid-beta protein plaques of Alzheimer’s disease (Photo courtesy of Lathuilière A et al, 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Infographic describing the newly developed implant device that may revolutionize therapy for patients with Alzheimer’s disease (Image courtesy of Lathuilière A et al., 2016, and Swiss Federal Institute of Technology in Lausanne).
Image: Infographic describing the newly developed implant device that may revolutionize therapy for patients with Alzheimer’s disease (Image courtesy of Lathuilière A et al., 2016, and Swiss Federal Institute of Technology in Lausanne).
In landmark proof-of-concept study with mice, a cutting-edge subcutaneous-implant capsule developed for treatment for Alzheimer’s disease, successfully directed the immune system against the disease.

One of the hypothesized causes of Alzheimer’s is over-accumulation of the protein amyloid-beta (Abeta) in different areas of the brain, resulting in deposition of aggregated protein plaques, which are toxic to neurons. One of the most promising treatments is to tag Abeta with antibodies that signal the patient’s own immune system to attack and clear them. To be most effective, this treatment has to be given as early, before the first signs of cognitive decline. Another drawback is that this treatment requires repeated vaccine injections, which can cause side effects.

The laboratory of Patrick Aebischer at the Swiss Federal Institute of Technology in Lausanne (EPFL – École Polytechnique Fédérale de Lausanne; Switzerland) have now innovatively solved the problem. The team developed a bioactive capsule containing cells genetically engineered to produce antibodies against Abeta. The capsule is implanted in tissue under the skin and the cells release a steady and safe flow of anti-Abeta antibodies into the bloodstream, from where they cross over into the brain and target the Abeta plaques.

The “macroencapsulation device” is made of two permeable membranes sealed together with a polypropylene frame. The membranes also allow the cells to interact with surrounding tissue to get the nutrients needed. The complete device is 27-mm long, 12-mm wide, 1.2-mm thick, and contains a hydrogel that facilitates cell growth. All the materials used are biocompatible, and a method was specifically used that is easily reproducible for large-scale manufacturing.

The cells in the capsule must be able to produce antibodies, but they must not trigger a rejection response in immune system (as with organ transplants). This is where the capsule membranes come into play: they shield the cells from being identified and attacked by the immune system. This protection also enables cells from a single donor to be used on multiple patients.

In the study, the device was successful in reducing pathology when tested on a mouse model for Alzheimer’s. Treatment resulted in a dramatic reduction of Abeta plaque load, and the constant flow of antibodies produced by the capsule over a course of 39 weeks prevented the formation of Abeta plaques in the brain. The treatment also reduced phosphorylation of the protein tau, another sign of Alzheimer’s.

The work demonstrated a proof-of-concept that encapsulated cell implants can be used successfully and safely to deliver antibodies to treat Alzheimer’s disease and other neurodegenerative disorders that feature defective proteins.

The study, by Lathuilière A et al., was published March 8, 2016, in the journal Brain.

Related Links:

Swiss Federal Institute of Technology in Lausanne



Channels

Genomics/Proteomics

view channel
Image: A photomicrograph of a thyroid gland section: (1) follicles, (2) follicular cells, (3) endothelial cells (Photo courtesy of Wikimedia Commons).

Novel Method Enables Generation of Thyroid Tissue from Mouse Stem Cells

A novel method for generating thyroid cells (thyrocytes) from embryonic stem cells was demonstrated in a mouse model. The dysfunctional thyroid gland can lead to severe disease such as Grave's disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2017 Globetech Media. All rights reserved.