We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cell Therapies Improve Survival of Mouse Brain Cancer Model

By LabMedica International staff writers
Posted on 09 Mar 2016
Print article
Image: Reprogrammed stem cells (green) chase down and kill glioblastoma cells (pink), potentially offering a new and more effective treatment option for a disease that has not had any in more than 30 years (Photo courtesy of the University of North Carolina).
Image: Reprogrammed stem cells (green) chase down and kill glioblastoma cells (pink), potentially offering a new and more effective treatment option for a disease that has not had any in more than 30 years (Photo courtesy of the University of North Carolina).
Two papers have described the use of fibrin-embedded, biologically engineered induced neural and mesenchymal stem cells in tumor-homing cytotoxic stem cell (SC) therapy that shows promise as a new approach for treating the incurable brain cancer glioblastoma multiforme (GBM).

Investigators at the University of North Carolina (Chapel Hill, USA) used the process of transdifferentiation to convert skin fibroblasts into induced neural stem cells (iNSCs). Transdifferentiation, also known as lineage reprogramming, is a process where one mature somatic cell transforms into another mature somatic cell without undergoing an intermediate pluripotent state or progenitor cell type.

They reported in the February 2, 2016, online edition of the journal Nature Communications that in a mouse brain cancer model, iNSCs were tumoritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumor foci in the mouse brain. The iNSCs could be modified to deliver the anticancer molecule TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Treatment with iNSC-TRAIL decreased the growth of established solid and diffuse patient-derived glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival.

In the second paper, which was published in the January 6, 2016, online edition of the journal Biomaterials, the investigators described a fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the surgical cavity, yet remaining permissive to tumoritropic migration. Using the mouse GBM model, they showed that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity two-fold and prolonged persistence in the cavity three-fold compared to conventional delivery strategies.

Cytotoxic hMSCs in the fibrin matrix remained tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. When TRAIL (TR) was encapsulated into the hMSCs (hMSC-sTR) in a fibrin matrix, the hMSC-sTR/fibrin therapy reduced the viability of multiple three-dimensional human GBM spheroids and regressed established human GBM xenografts three-fold in 11 days.

In an experiment that mimicked the clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced postsurgical GBM volumes six-fold, increased time to recurrence four-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals.

"Our work represents the newest evolution of the stem-cell technology that won the Nobel Prize in 2012," said senior author Dr. Shawn Hingtgen, assistant of pharmacy at the University of North Carolina. "We wanted to find out if these induced neural stem cells would home in on cancer cells and whether they could be used to deliver a therapeutic agent. This is the first time this direct reprogramming technology has been used to treat cancer."

Related Links:

University of North Carolina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Reagent Reservoirs
Reagent Reservoirs

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.