We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Low-Temperature Plasma Treatment Kills Prostate Cancer Cells

By LabMedica International staff writers
Posted on 22 Apr 2015
Print article
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
By combining physics and biology a team of British cancer researchers has shown that low-temperature plasma (LTP) treatment kills prostate cancer cells in culture and may warrant development into a therapeutic tool to replace radiation and photodynamic methods.

Low-temperature plasmas have shown considerable potential as active agents in biomedicine. They are formed by applying a high electric field across a gas at atmospheric pressure and room temperature, which accelerates electrons into nearby atoms and molecules, leading to a cascade effect of multiple ionization, excitation and dissociation processes. This creates a complex and unique reactive environment consisting of positive and negative charges, strong localized electric fields, UV radiation, reactive species, and mainly background neutral molecules.

In the current study investigators at the University of York (United Kingdom) first verified the cytopathic effect of low-temperature plasma in two commonly used prostate cell lines: BPH-1 (benign) and PC-3 cells (malignant). The study was then extended to analyze the effects in paired normal and tumor (Gleason grade 7) prostate epithelial cells cultured directly from tissues taken from the same patient, allowing for direct comparison of the effects of LTP on both normal and cancer cells.

Results published in the April 2, 2015, online edition of the British Journal of Cancer revealed that LTP exposure resulted in high levels of DNA damage in primary prostate cells as well as a reduction in cell viability and colony-forming ability. Hydrogen peroxide formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.

First author Adam Hirst, a doctoral student at the University of York, said, "These results suggest that LTP may be a suitable candidate for focal therapy treatment of patients with early onset prostate cancer through the induction of high levels of DNA damage, leading to a substantial reduction in colony-forming capacity, and ultimately necrotic cell death, in clinically relevant and close-to-patient samples."

The next step in developing this treatment will involve testing the method on three-dimensional replica tumors in order to monitor the precision of plasma application. If all subsequent trials are successful, the researchers believe that LTP could be used to treat cancer patients within 10-15 years.

Related Links:

University of York


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.