We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Low-Temperature Plasma Treatment Kills Prostate Cancer Cells

By LabMedica International staff writers
Posted on 22 Apr 2015
Print article
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
Image: Low-temperature plasmas are formed in a chamber like the one shown in the photo by applying a high electric field across a gas at atmospheric pressure and room temperature (Photo courtesy of the University of York).
By combining physics and biology a team of British cancer researchers has shown that low-temperature plasma (LTP) treatment kills prostate cancer cells in culture and may warrant development into a therapeutic tool to replace radiation and photodynamic methods.

Low-temperature plasmas have shown considerable potential as active agents in biomedicine. They are formed by applying a high electric field across a gas at atmospheric pressure and room temperature, which accelerates electrons into nearby atoms and molecules, leading to a cascade effect of multiple ionization, excitation and dissociation processes. This creates a complex and unique reactive environment consisting of positive and negative charges, strong localized electric fields, UV radiation, reactive species, and mainly background neutral molecules.

In the current study investigators at the University of York (United Kingdom) first verified the cytopathic effect of low-temperature plasma in two commonly used prostate cell lines: BPH-1 (benign) and PC-3 cells (malignant). The study was then extended to analyze the effects in paired normal and tumor (Gleason grade 7) prostate epithelial cells cultured directly from tissues taken from the same patient, allowing for direct comparison of the effects of LTP on both normal and cancer cells.

Results published in the April 2, 2015, online edition of the British Journal of Cancer revealed that LTP exposure resulted in high levels of DNA damage in primary prostate cells as well as a reduction in cell viability and colony-forming ability. Hydrogen peroxide formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.

First author Adam Hirst, a doctoral student at the University of York, said, "These results suggest that LTP may be a suitable candidate for focal therapy treatment of patients with early onset prostate cancer through the induction of high levels of DNA damage, leading to a substantial reduction in colony-forming capacity, and ultimately necrotic cell death, in clinically relevant and close-to-patient samples."

The next step in developing this treatment will involve testing the method on three-dimensional replica tumors in order to monitor the precision of plasma application. If all subsequent trials are successful, the researchers believe that LTP could be used to treat cancer patients within 10-15 years.

Related Links:

University of York


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.