Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Deletion of the FOXO1 Gene Transforms Intestinal Cells into Insulin Producers

By BiotechDaily International staff writers
Posted on 13 Jul 2014
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
Image: Human gastrointestinal cells from patients were engineered to express insulin (fluorescent green) in the laboratory (Photo courtesy of Columbia University).
After having demonstrated that gut endocrine progenitor cells of mice could be differentiated into glucose-responsive, insulin-producing cells by elimination of the transcription factor FOXO1 (forkhead box O1), diabetes researchers have extended these findings by obtaining similar results with human gut endocrine progenitor and serotonin-producing cells.

Generation of alternative sources of insulin-producing beta-cells has been a goal of researchers in the field of diabetes therapy. While most efforts have been directed at differentiating embryonic or induced pluripotent stem (iPS) cells into beta-like-cells, investigators at Columbia University (New York, NY, USA) have shown that shown that mouse intestinal cells could be transformed into insulin-producing cells by deactivating the cells’ FOXO1 gene.

In a paper published in the June 30, 2014, online edition of the journal Nature Communications, the investigators revealed that FOXO1 was present in human gut endocrine progenitor and serotonin-producing cells. Using gut organoids derived from human iPS cells, they demonstrated that inhibition of FOXO1 using a dominant-negative mutant or Lentivirus-encoded small hairpin RNA promoted generation of insulin-positive cells that expressed all markers of mature pancreatic beta-cells and survived in vivo following transplantation into mice.

“People have been talking about turning one cell into another for a long time, but until now we had not gotten to the point of creating a fully functional insulin-producing cell by the manipulation of a single target,” said senior author Dr. Domenico Accili, professor of diabetes at Columbia University. “By showing that human cells can respond in the same way as mouse cells, we have cleared a main hurdle and can now move forward to try to make this treatment a reality.”

Related Links:

Columbia University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.