Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Low Dose of Targeted Agent May Enhance Cancer-Destroying Virus Treatment

By BiotechDaily International staff writers
Posted on 22 Jun 2014
Administering low doses of the targeted agent bortezomib with a cancer-killing virus has the potential of enhancing the effectiveness of the virus as treatment for cancer with little added toxicity. This, according to researchers from the Ohio State University Comprehensive Cancer Center (Columbus, USA)-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James). These new findings support the testing of this combination therapy in a clinical trial.

Viruses that are devised to destroy cancer cells—oncolytic viruses—have demonstrated potential in clinical trials for the treatment of brain cancer and other solid tumors. This cell and animal research suggests that mixing low doses of the drug bortezomib with a specific oncolytic virus might substantially enhance the capacity of the virus to kill cancer cells during therapy.

The research was published online May 9, 2014, in the journal Clinical Cancer Research. “These findings pave the way for a treatment strategy for cancer that combines low doses of bortezomib with an oncolytic virus to maximize the efficacy of the virus with little added toxicity,” said lead investigator Balveen Kaur, PhD, professor and vice chair of research, department of neurological surgery and radiation oncology, and a member of the OSUCCC-James Translational Therapeutics Program. “Because bortezomib is already approved by the [US] Food and Drug Administration, a clinical trial could be done relatively quickly to test the effectiveness of the drug-virus combination.”

Bortezomib suppressed the activity of proteasomes, structures in cells that break down and recycle proteins. Prof. Kaur noted that blocking these “cellular recycling plants” triggers a cellular stress response and increases the expression of heat shock proteins. This reaction, which can lead to bortezomib resistance, makes the cells more sensitive to oncolytic virus therapy with little additional toxicity.

For this study, the investigators used a herpes simplex virus-type 1 oncolytic virus. Key technical findings include: (1) One of the overexpressed heat-shock proteins, HSP90, facilitates oncolytic virus replication, enabling the virus to kill more tumor cells; (2) in a glioma model, the combined treatment suppressed tumor growth by 92% in relation to controls and improved survival (six of eight tumors had entirely regressed by day 23 after treatment); (3) lastly, similar outcomes occurred in a head and neck cancer model.

“To our knowledge, this study is the first to show synergy between an oncolytic HSV-1-derived cancer killing virus and bortezomib,” Prof. Kaur concluded. “It offers a novel therapeutic strategy that can be rapidly translated in patients with various solid tumors.”

Related Links:

Ohio State University Comprehensive Cancer Center



Channels

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.