Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 Oct 2016 - 12 Oct 2016
12 Nov 2016 - 16 Nov 2016

Low Dose of Targeted Agent May Enhance Cancer-Destroying Virus Treatment

By BiotechDaily International staff writers
Posted on 22 Jun 2014
Print article
Administering low doses of the targeted agent bortezomib with a cancer-killing virus has the potential of enhancing the effectiveness of the virus as treatment for cancer with little added toxicity. This, according to researchers from the Ohio State University Comprehensive Cancer Center (Columbus, USA)-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James). These new findings support the testing of this combination therapy in a clinical trial.

Viruses that are devised to destroy cancer cells—oncolytic viruses—have demonstrated potential in clinical trials for the treatment of brain cancer and other solid tumors. This cell and animal research suggests that mixing low doses of the drug bortezomib with a specific oncolytic virus might substantially enhance the capacity of the virus to kill cancer cells during therapy.

The research was published online May 9, 2014, in the journal Clinical Cancer Research. “These findings pave the way for a treatment strategy for cancer that combines low doses of bortezomib with an oncolytic virus to maximize the efficacy of the virus with little added toxicity,” said lead investigator Balveen Kaur, PhD, professor and vice chair of research, department of neurological surgery and radiation oncology, and a member of the OSUCCC-James Translational Therapeutics Program. “Because bortezomib is already approved by the [US] Food and Drug Administration, a clinical trial could be done relatively quickly to test the effectiveness of the drug-virus combination.”

Bortezomib suppressed the activity of proteasomes, structures in cells that break down and recycle proteins. Prof. Kaur noted that blocking these “cellular recycling plants” triggers a cellular stress response and increases the expression of heat shock proteins. This reaction, which can lead to bortezomib resistance, makes the cells more sensitive to oncolytic virus therapy with little additional toxicity.

For this study, the investigators used a herpes simplex virus-type 1 oncolytic virus. Key technical findings include: (1) One of the overexpressed heat-shock proteins, HSP90, facilitates oncolytic virus replication, enabling the virus to kill more tumor cells; (2) in a glioma model, the combined treatment suppressed tumor growth by 92% in relation to controls and improved survival (six of eight tumors had entirely regressed by day 23 after treatment); (3) lastly, similar outcomes occurred in a head and neck cancer model.

“To our knowledge, this study is the first to show synergy between an oncolytic HSV-1-derived cancer killing virus and bortezomib,” Prof. Kaur concluded. “It offers a novel therapeutic strategy that can be rapidly translated in patients with various solid tumors.”

Related Links:

Ohio State University Comprehensive Cancer Center



Print article

Channels

Drug Discovery

view channel
Image: Ginger is the source of a novel class of nanolipid transport vector (Photo courtesy of Georgia State University).

Ginger-Derived Doxorubicin-Loaded Nanovectors as Drug Delivery for Cancer Therapy

A novel type of nanoparticle drug transport system based on lipids isolated from ginger was used to deliver the toxic chemotherapeutic agent doxorubicin (Dox) to colon cancer cells with minimal damage... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.