Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Low Dose of Targeted Agent May Enhance Cancer-Destroying Virus Treatment

By BiotechDaily International staff writers
Posted on 22 Jun 2014
Administering low doses of the targeted agent bortezomib with a cancer-killing virus has the potential of enhancing the effectiveness of the virus as treatment for cancer with little added toxicity. This, according to researchers from the Ohio State University Comprehensive Cancer Center (Columbus, USA)-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James). These new findings support the testing of this combination therapy in a clinical trial.

Viruses that are devised to destroy cancer cells—oncolytic viruses—have demonstrated potential in clinical trials for the treatment of brain cancer and other solid tumors. This cell and animal research suggests that mixing low doses of the drug bortezomib with a specific oncolytic virus might substantially enhance the capacity of the virus to kill cancer cells during therapy.

The research was published online May 9, 2014, in the journal Clinical Cancer Research. “These findings pave the way for a treatment strategy for cancer that combines low doses of bortezomib with an oncolytic virus to maximize the efficacy of the virus with little added toxicity,” said lead investigator Balveen Kaur, PhD, professor and vice chair of research, department of neurological surgery and radiation oncology, and a member of the OSUCCC-James Translational Therapeutics Program. “Because bortezomib is already approved by the [US] Food and Drug Administration, a clinical trial could be done relatively quickly to test the effectiveness of the drug-virus combination.”

Bortezomib suppressed the activity of proteasomes, structures in cells that break down and recycle proteins. Prof. Kaur noted that blocking these “cellular recycling plants” triggers a cellular stress response and increases the expression of heat shock proteins. This reaction, which can lead to bortezomib resistance, makes the cells more sensitive to oncolytic virus therapy with little additional toxicity.

For this study, the investigators used a herpes simplex virus-type 1 oncolytic virus. Key technical findings include: (1) One of the overexpressed heat-shock proteins, HSP90, facilitates oncolytic virus replication, enabling the virus to kill more tumor cells; (2) in a glioma model, the combined treatment suppressed tumor growth by 92% in relation to controls and improved survival (six of eight tumors had entirely regressed by day 23 after treatment); (3) lastly, similar outcomes occurred in a head and neck cancer model.

“To our knowledge, this study is the first to show synergy between an oncolytic HSV-1-derived cancer killing virus and bortezomib,” Prof. Kaur concluded. “It offers a novel therapeutic strategy that can be rapidly translated in patients with various solid tumors.”

Related Links:

Ohio State University Comprehensive Cancer Center



Channels

Genomics/Proteomics

view channel
Image: The bone marrow of mice with normal ether lipid production (top) contains more white blood cells than are found in the bone marrow of mice with ether lipid deficiency (bottom) (Photo courtesy of Washington University School of Medicine).

Inactivating Fatty Acid Synthase Reduces Inflammation by Interfering with Neutrophil Membrane Function

The enzyme fatty acid synthase (FAS) was shown to regulate inflammation by sustaining neutrophil viability through modulation of membrane phospholipid composition. Neutrophils are the most abundant... Read more

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.