Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Prolonged Fasting Promotes Immune System Regeneration

By BiotechDaily International staff writers
Posted on 17 Jun 2014
Image: Schematic flow chart of the effects of prolonged fasting on the immune system (Photo courtesy of USC).
Image: Schematic flow chart of the effects of prolonged fasting on the immune system (Photo courtesy of USC).
A new study suggest that prolonged cycles of fasting trigger stem-cell based regeneration of immune cells and the clearing out of old, damaged cells.

Researchers at the University of Southern California (USC; Los Angeles, USA), the University of Palermo (Italy), and other institutions have succeeded in demonstrating in a mouse model that fasting for 2–4 days at a time reduces circulating insulin-like growth factor 1 (IGF-1) levels and protein kinase A (PKA) activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration.

The researchers also found that multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias, supporting previous data on the protection of lymphocytes from chemotoxicity in fasting. The pro-regenerative effects of fasting on stem cells were reinforced by deficiency in either IGF-1 or PKA, and blunted by exogenous IGF-1. Prolonged fasting also protected against toxicity in a pilot clinical trial in which a small group of human patients fasted for a 72-hour period prior to chemotherapy. The study was published on June 5, 2014, in the journal Cell Stem Cell.

“Switching off the gene for PKA is the key step that triggers the stem cells to shift to regeneration; it gives the OK for stem cells to go ahead and begin proliferating and rebuild the entire system,” said corresponding author Prof. Valter Longo, PhD, director of the USC Longevity Institute. “The good news is that the body also rids itself of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. If you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

According to the authors, the study has major implications for healthier aging, in which immune system decline contributes to increased susceptibility to disease as we age. By outlining how prolonged fasting cycles kill older and damaged immune cells and generate new ones, the research also has implications for chemotherapy tolerance and for those with a wide range of immune system deficiencies, including autoimmunity disorders.

Related Links:

University of Southern California
University of Palermo



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.