Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Prolonged Fasting Promotes Immune System Regeneration

By BiotechDaily International staff writers
Posted on 17 Jun 2014
Image: Schematic flow chart of the effects of prolonged fasting on the immune system (Photo courtesy of USC).
Image: Schematic flow chart of the effects of prolonged fasting on the immune system (Photo courtesy of USC).
A new study suggest that prolonged cycles of fasting trigger stem-cell based regeneration of immune cells and the clearing out of old, damaged cells.

Researchers at the University of Southern California (USC; Los Angeles, USA), the University of Palermo (Italy), and other institutions have succeeded in demonstrating in a mouse model that fasting for 2–4 days at a time reduces circulating insulin-like growth factor 1 (IGF-1) levels and protein kinase A (PKA) activity in various cell populations, leading to signal transduction changes in long-term hematopoietic stem cells (LT-HSCs) and niche cells that promote stress resistance, self-renewal, and lineage-balanced regeneration.

The researchers also found that multiple cycles of fasting abated the immunosuppression and mortality caused by chemotherapy and reversed age-dependent myeloid-bias, supporting previous data on the protection of lymphocytes from chemotoxicity in fasting. The pro-regenerative effects of fasting on stem cells were reinforced by deficiency in either IGF-1 or PKA, and blunted by exogenous IGF-1. Prolonged fasting also protected against toxicity in a pilot clinical trial in which a small group of human patients fasted for a 72-hour period prior to chemotherapy. The study was published on June 5, 2014, in the journal Cell Stem Cell.

“Switching off the gene for PKA is the key step that triggers the stem cells to shift to regeneration; it gives the OK for stem cells to go ahead and begin proliferating and rebuild the entire system,” said corresponding author Prof. Valter Longo, PhD, director of the USC Longevity Institute. “The good news is that the body also rids itself of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. If you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

According to the authors, the study has major implications for healthier aging, in which immune system decline contributes to increased susceptibility to disease as we age. By outlining how prolonged fasting cycles kill older and damaged immune cells and generate new ones, the research also has implications for chemotherapy tolerance and for those with a wide range of immune system deficiencies, including autoimmunity disorders.

Related Links:

University of Southern California
University of Palermo



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.