Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Possible Target for Gene Therapy May Correct Cardiac Hypertrophy

By BiotechDaily International staff writers
Posted on 19 May 2014
Image: Left ventricular cardiac hypertrophy in short axis view (Photo courtesy of Patrick Lynch).
Image: Left ventricular cardiac hypertrophy in short axis view (Photo courtesy of Patrick Lynch).
A deficit in the expression of the protein Erbin (ErbB2 interacting protein) has been linked to the development of cardiac hypertrophy and heart failure.

The gene that encodes the Erbin protein is a member of the leucine-rich repeat and PDZ domain (LAP) family. The encoded Erbin protein contains 17 leucine-rich repeats and one PDZ domain. It binds to the unphosphorylated form of the ERBB2 protein and regulates ERBB2 function and localization. Erbin's C-terminal PDZ domain is able to bind to ErbB2, a protein tyrosine kinase which is often associated with poor prognosis during the development of skin cancer. Its N-terminal region has been shown to affect the Ras signaling pathway by disrupting Ras-Raf interaction.

Investigators at the Hebrew University of Jerusalem (Israel) looked at Erbin levels in humans and animals with and without cardiac hypertrophy. In addition, they genetically engineered a line of mice to lack the Erbin gene.

They reported in the April 22, 2014, issue of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that there was down-regulation of Erbin expression in biopsies derived from human failing hearts.

In mouse models cardiac hypertrophy was induced either by isoproterenol administration or by aortic constriction. In both models the level of Erbin was significantly decreased. The genetically engineered Erbin knockout mice rapidly developed decompensated cardiac hypertrophy and following severe pressure overload, all of these mice died from heart failure (compared to only about 30% mortality observed in the control group).

It is known that Erbin inhibited Ras-mediated activation of the extracellular signal-regulated kinase (ERK) by binding to the protein Soc-2 suppressor of clear homolog (Shoc2). The data obtained during this study showed that ERK phosphorylation was enhanced in the heart tissues of the Erbin knockout mice. Furthermore, Erbin associated with Shoc2 in both whole hearts and in cardiomyocytes, and that in the absence of Erbin, Raf was phosphorylated and bound to Shoc2, resulting in ERK phosphorylation.

The investigators concluded that, "Erbin is an inhibitor of pathological cardiac hypertrophy, and this inhibition is mediated, at least in part, by modulating ERK signaling. We describe a cardioprotective role for Erbin, which suggests it is a potential target for cardiac gene therapy."

Related Links:

Hebrew University of Jerusalem



Channels

Drug Discovery

view channel
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Partners to Seek Novel Drugs to Treat Fibrotic Diseases

A global biopharmaceutical company and an American university hospital-based research institute have agreed to collaborate on the diagnosis and cure of fibrotic diseases. Fibrotic diseases such as scleroderma, renal fibrosis, and idiopathic pulmonary fibrosis are characterized by the gradual formation of excess fibrous... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.