We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoparticle Created for Cancer Therapy

By LabMedica International staff writers
Posted on 29 Apr 2014
Print article
Image: X-ray destruction of human breast cancer cells using Cu-Cy particles. The images show the live cancer cells stained green and the dead cells stained red (Photo courtesy of Wei Chen/UT Arlington).
Image: X-ray destruction of human breast cancer cells using Cu-Cy particles. The images show the live cancer cells stained green and the dead cells stained red (Photo courtesy of Wei Chen/UT Arlington).
A physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead developed a new tool for photodynamic cancer therapy.

Wei Chen, professor of physics and co-director of University of Texas (UT) at Arlington (USA) Center for Security Advances Via Applied Nanotechnology, was testing a copper-cysteamine (Cu-Cy) complex created in his lab when he discovered mysterious decreases in its luminescence, or light emitting power, over a time-lapse exposure to X-rays. Researching further, he discovered that the nanoparticles, called Cu-Cy, were losing energy as they emitted singlet oxygen—a toxic byproduct used to damage cancer cells in photodynamic therapy.

Because Prof. Chen also is leading federally funded cancer research, he knew he had found something unique. Testing revealed that the Cu-Cy nanoparticles, combined with X-ray exposure, significantly slowed tumor growth in lab studies. “This new idea is simpler and better than previous photodynamic therapy methods. You don’t need as many steps. This material alone can do the job,” Prof. Chen said. “It is the most promising thing we have found in these cancer studies and we’ve been looking at this for a long time.”

Prof. Chen’s research will be published in the August 2014 edition of the Journal of Biomedical Nanotechnology. The article was published online April 2014. The University has also filed a provisional patent application on the new complex.

Photodynamic therapy (PDT) harms cancer cells when a photosensitizer introduced into tumor tissue produces toxic singlet oxygen after being exposed to light. In some studies, this light exposure is done through use of visible or near-infrared lasers. Others have found more success by also introducing luminescent nanoparticles into the tumor. Researchers activate the luminescent nanoparticle with near-infrared light or X-rays, which in turn activates the photosensitizer.

Both techniques have limitations for treating deep tissue cancers. They are either ineffective or the light source needed to activate them does not penetrate deep enough. Prof. Chen reported that X-ray-inducible Cu-Cy particles surpass current photosensitizers because the X-rays can penetrate deep into tissue. Furthermore, Cu-Cy nanoparticles do not need other photosensitizes to be effective so the treatment is more convenient, efficient and cost-effective.

“Dr. Chen’s commitment to his work in cancer-related therapy, as well as his work in the area of homeland security, demonstrates the wide-ranging applications and great value of basic science research,” said Carolyn Cason, vice president for research at UT Arlington. “These advances have the potential to change the way some cancers are treated and make therapy more effective—a benefit that would be boundless.”

Prof, Chen’s team assessed the Cu-Cy on human breast and prostate cancer cells in the lab and found it to be an effective treatment when combined with X-ray exposure. In one esperiment, for example, a tumor treated with Cu-Cy injection and X-ray exposure stayed virtually the same size over a 13-day period while a tumor without the full treatment grew by three times.

Another benefit of the new nanoparticle is a low toxicity to healthy cells. Furthermore, Cu-Cy’s intense photoluminescence and X-ray luminescence can be employed for cell imaging, according to the scientists. Details of the crystal structure and optical characteristics of the new complex are slated for publication in an upcoming paper from the Journal of Materials Chemistry. Prof. Chen reported that additional research would include reducing the size of the Cu-Cy nanoparticle to make it more easily absorbed in the tumor tissue. “For cancer, there is still no good solution yet. Hopefully this nanoparticle can provide some possibilities,” he said.

Related Links:

University of Texas at Arlington


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.