Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Engineered Virus Designed to Fight Triple-Negative Breast Cancer

By BiotechDaily International staff writers
Posted on 11 Feb 2014
Image: Breast cancer cell. Triple-negative breast cancer is an aggressive disease with few therapeutic options. Patients with such tumors can be treated only with chemotherapy (Photo courtesy of the National Cancer Institute).
Image: Breast cancer cell. Triple-negative breast cancer is an aggressive disease with few therapeutic options. Patients with such tumors can be treated only with chemotherapy (Photo courtesy of the National Cancer Institute).
Scientists have found a possible cure for one of the most deadly, aggressive, and least treatable forms of breast cancer called triple-negative breast cancer (TNBC). In laboratory research involving human cancer cells, scientists exploited a virus comparable to the one that helped eradicate smallpox to persuade cancer cells to generate a protein that makes them disposed to radioactive iodine.

The new findings were published in the February 2014 issue of Federation of American Societies for Experimental Biology’s the FASEB Journal. “We hope that the recent developments in genetic engineering, virology, and targeted radiotherapy will soon translate into an entire class of innovative oncolytic virotherapies for the treatment of deadly cancers,” said Yuman Fong, MD, a researcher involved in the work from the department of surgery at Memorial Sloan-Kettering Cancer Center (New York, NY, USA).

In the study, Dr. Fong and colleagues effectively infected and destroyed TNBC cells using a Vaccinia virus. Furthermore, the researchers were also able to utilize the virus to cause infected cancer cells produce a cell surface protein called hNIS (human Na+/I- symporter) that typically is used to concentrate iodine in thyroid cells. Expressed in thyroid cancer, the hNIS protein is why most thyroid cancers can be cured or successfully treated with a small dose of radioactive iodine, killing thyroid cancer cells expressing hNIS in the process. Equipped with the ability to compel TNBC cells to produce this protein, researchers now have a way to deliver anticancer treatments to this lethal and resistant form of cancer.

“This is an important and significant discovery that basically combines proven cures for two other diseases,” said Gerald Weissmann, MD, editor-in-chief of the FASEB Journal. “Even more exciting is that the effects of this virus and radioactive iodine are well known in people, hopefully reducing the amount of time it will take for it to reach the clinic.”

Related Links:

Memorial Sloan-Kettering Cancer Center



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Drug Discovery

view channel

Curcumin Used to Treat Alzheimer’s Disease

Curcumin, a natural substance found in the spice turmeric, has been used by many Asian cultures for centuries. Now, new research suggests that a close chemical analog of curcumin has properties that may make it useful as a treatment for Alzheimer’s disease. “Curcumin has demonstrated ability to enter the brain, bind... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.