Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Engineered Virus Designed to Fight Triple-Negative Breast Cancer

By BiotechDaily International staff writers
Posted on 11 Feb 2014
Image: Breast cancer cell. Triple-negative breast cancer is an aggressive disease with few therapeutic options. Patients with such tumors can be treated only with chemotherapy (Photo courtesy of the National Cancer Institute).
Image: Breast cancer cell. Triple-negative breast cancer is an aggressive disease with few therapeutic options. Patients with such tumors can be treated only with chemotherapy (Photo courtesy of the National Cancer Institute).
Scientists have found a possible cure for one of the most deadly, aggressive, and least treatable forms of breast cancer called triple-negative breast cancer (TNBC). In laboratory research involving human cancer cells, scientists exploited a virus comparable to the one that helped eradicate smallpox to persuade cancer cells to generate a protein that makes them disposed to radioactive iodine.

The new findings were published in the February 2014 issue of Federation of American Societies for Experimental Biology’s the FASEB Journal. “We hope that the recent developments in genetic engineering, virology, and targeted radiotherapy will soon translate into an entire class of innovative oncolytic virotherapies for the treatment of deadly cancers,” said Yuman Fong, MD, a researcher involved in the work from the department of surgery at Memorial Sloan-Kettering Cancer Center (New York, NY, USA).

In the study, Dr. Fong and colleagues effectively infected and destroyed TNBC cells using a Vaccinia virus. Furthermore, the researchers were also able to utilize the virus to cause infected cancer cells produce a cell surface protein called hNIS (human Na+/I- symporter) that typically is used to concentrate iodine in thyroid cells. Expressed in thyroid cancer, the hNIS protein is why most thyroid cancers can be cured or successfully treated with a small dose of radioactive iodine, killing thyroid cancer cells expressing hNIS in the process. Equipped with the ability to compel TNBC cells to produce this protein, researchers now have a way to deliver anticancer treatments to this lethal and resistant form of cancer.

“This is an important and significant discovery that basically combines proven cures for two other diseases,” said Gerald Weissmann, MD, editor-in-chief of the FASEB Journal. “Even more exciting is that the effects of this virus and radioactive iodine are well known in people, hopefully reducing the amount of time it will take for it to reach the clinic.”

Related Links:

Memorial Sloan-Kettering Cancer Center



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.