Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Study Initiated to Fight Metastatic Breast Cancer with Innovative Nanoparticles

By BiotechDaily International staff writers
Posted on 10 Feb 2014
Print article
A USD 1.3 million grant has been given to an American pharmacy professor to further research a new class of inorganic nanoparticles that target primary cancer, and help control the disease’s metastases and recurrence.

Dr. Wei Lu, the recipient of the US The National Institutes of Health (NIH; Bethesda, MD, USA) grant, is an assistant professor of biomedical and pharmaceutical sciences in the College of Pharmacy at the University of Rhode Island (Kingston, USA), has discovered in his early research efforts that hollow copper sulfide nanoparticles are effective in delivering chemotherapy and heat through a laser that can burn the tumor.

The investigator will be using the four-year NIH grant to further his laboratory research with a focus on breast cancer, the second most frequently diagnosed malignancy in women worldwide. “We are developing a novel cancer therapeutic technology that has several innovative features: biodegradability, multimodality, and simplicity,” said Dr. Lu, who is teaming with pharmacy Prof. Bingfang Yan, a specialist in genetic and environmental factors that combine to control the expression of genes involved in drug response and the cellular switches related to tumor formation. “One nanoparticle can carry hundreds or even thousands of drug molecules to a target like a tumor cell,” he said.

Dr. Lu wants to improve photothermal ablation therapy, a process that uses lasers in cancer treatment. At first, high levels of laser treatments were required to burn and consequently destroy the tumor. Inorganic nanoparticles were introduced, approximately 10 years ago, to this process in animal tests, which provided better absorption of the laser light, generated greater heat, and in turn lowered the laser doses.

However, there are several problems with current nanoparticle-aided photothermal ablation therapy. For example, the current delivery technology does not allow the nanoparticles to be distributed evenly in a tumor, thus the heat generated by the particles is not evenly distributed. As a result, malignancy can continue in the site receiving sub-lethal doses of heat.

Furthermore, some types of nanoparticles, such as gold particles, are difficult for the body to eliminate. “As is the case with surgical removal of a tumor, getting all of the cancer is critical,” Dr. Lu said. “The new nanoparticles provide a three-way punch to the tumor: a more widespread ability in a tumor to distribute heat and burn the tumor, a more efficient and comprehensive way to deliver chemotherapy, and better use of heat to activate the chemotherapeutic agents and immunotherapeutic agents. The new nanotechnology has great potential to eradicate tumors."
 
“Such nanoparticles are introduced intravenously and are absorbed into a tumor,” Dr. Lu concluded. “This study is using near-infrared laser light instead of ultraviolet light or visible light because it penetrates tumor tissue better and has much lower side effects. In addition, these particles are readily degradable in the body, minimizing potential organ toxicity.” 

Related Links:

University of Rhode Island
 


Print article

Channels

Genomics/Proteomics

view channel
Image: The green-labeled cells show a basal cell carcinoma in mouse tail epidermis derived from a single mutant stem cell and expanding out of the normal epidermis stained in red (Photo courtesy of Adriana Sánchez-Danés, Université Libre de Bruxelles).

Stem Cells Not Progenitors Can Trigger Skin Cancer Growth

Cancer researchers have discovered that stem cells can initiate development of malignant skin tumors, while progenitor cells are limited to triggering only benign growths. A progenitor cell is similar... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Sartorius Acquires US Start-up ViroCyt

Sartorius AG (Göttingen, Germany), a pharmaceutical and laboratory equipment provider, has acquired ViroCyt Incorporated (Broomfield, CO, USA), a start-up in the field of rapid virus quantification, in a deal valued at approximately USD 16 million. ViroCyt’s automated platform integrates instruments, software and reagents... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.