Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Study Initiated to Fight Metastatic Breast Cancer with Innovative Nanoparticles

By BiotechDaily International staff writers
Posted on 10 Feb 2014
A USD 1.3 million grant has been given to an American pharmacy professor to further research a new class of inorganic nanoparticles that target primary cancer, and help control the disease’s metastases and recurrence.

Dr. Wei Lu, the recipient of the US The National Institutes of Health (NIH; Bethesda, MD, USA) grant, is an assistant professor of biomedical and pharmaceutical sciences in the College of Pharmacy at the University of Rhode Island (Kingston, USA), has discovered in his early research efforts that hollow copper sulfide nanoparticles are effective in delivering chemotherapy and heat through a laser that can burn the tumor.

The investigator will be using the four-year NIH grant to further his laboratory research with a focus on breast cancer, the second most frequently diagnosed malignancy in women worldwide. “We are developing a novel cancer therapeutic technology that has several innovative features: biodegradability, multimodality, and simplicity,” said Dr. Lu, who is teaming with pharmacy Prof. Bingfang Yan, a specialist in genetic and environmental factors that combine to control the expression of genes involved in drug response and the cellular switches related to tumor formation. “One nanoparticle can carry hundreds or even thousands of drug molecules to a target like a tumor cell,” he said.

Dr. Lu wants to improve photothermal ablation therapy, a process that uses lasers in cancer treatment. At first, high levels of laser treatments were required to burn and consequently destroy the tumor. Inorganic nanoparticles were introduced, approximately 10 years ago, to this process in animal tests, which provided better absorption of the laser light, generated greater heat, and in turn lowered the laser doses.

However, there are several problems with current nanoparticle-aided photothermal ablation therapy. For example, the current delivery technology does not allow the nanoparticles to be distributed evenly in a tumor, thus the heat generated by the particles is not evenly distributed. As a result, malignancy can continue in the site receiving sub-lethal doses of heat.

Furthermore, some types of nanoparticles, such as gold particles, are difficult for the body to eliminate. “As is the case with surgical removal of a tumor, getting all of the cancer is critical,” Dr. Lu said. “The new nanoparticles provide a three-way punch to the tumor: a more widespread ability in a tumor to distribute heat and burn the tumor, a more efficient and comprehensive way to deliver chemotherapy, and better use of heat to activate the chemotherapeutic agents and immunotherapeutic agents. The new nanotechnology has great potential to eradicate tumors."
 
“Such nanoparticles are introduced intravenously and are absorbed into a tumor,” Dr. Lu concluded. “This study is using near-infrared laser light instead of ultraviolet light or visible light because it penetrates tumor tissue better and has much lower side effects. In addition, these particles are readily degradable in the body, minimizing potential organ toxicity.” 

Related Links:

University of Rhode Island
 


comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.