We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Data for Engineering Immune Cells Shows Promise in Antitumor Therapy

By LabMedica International staff writers
Posted on 14 Jan 2014
Print article
Chimeric antigen receptor T (CAR T) cells, which are engineered immune cells, have been designed to direct antitumor immune responses toward tumors that carry a protein called mesothelin. This new research showed antitumor activity in two patients with advanced tumors that had not responded to earlier treatments.

The new findings were published online December 19, 2013 in Cancer Immunology Research, a journal of the American Association for Cancer Research. CAR T cells are a form of customized cell therapy that uses immune cells called T cells from patients. After T cells are harvested from a patient, they are engineered to bear a molecule that allows them to attach to a specific protein carried by the patient’s cancer cells and to be stimulated to kill the cancer cells when they do so. CAR T cells have shown early promising findings for patients with some types of leukemia and lymphoma; however, they have not been very effective for solid cancers, one of the major issues being toxicity. Because healthy cells express the CAR T cell target protein, although at lower levels than cancer cells, the modified T cells recognize and attack the normal cells as well the cancer cells, causing off-target toxicity.

“So far, researchers have been permanently modifying T cells by using a variety of methods, including using viruses,” said Carl H. June, MD, a professor of pathology and laboratory medicine in the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) and director of translational research in the university’s Abramson Cancer Center. “We engineered T cells to express a CAR for about three days, after which the mRNA is metabolized rapidly by the system, so the T cells basically revert to what they were before in the patient. These T cells recognize a protein called mesothelin present in many tumors, including mesothelioma and pancreatic cancers; hence, we named them CARTmeso cells. Our strategy is to give multiple infusions of CARTmeso cells to the patient, and if there is toxicity, we could abort the toxicity just by stopping the infusions, because the mRNA-based CARs rapidly revert to normal T cells. We found that the temporary CARs we engineered are safe, with no significant on-target, off-tumor toxicity. We have evidence of antitumor effects in two patients whose advanced tumors failed previous therapies. These results, albeit preliminary, are very promising.”

Dr. June and colleagues recruited two patients, ages 75 and 81 years, to a phase I clinical trial. One patient had advanced mesothelioma, and the other patient had metastatic pancreatic cancer that progressed after not responding to first-line therapy. The goal of this trial was to evaluate the manufacturing feasibility and safety of the mRNA-based CARTmeso cells. The researchers isolated T cells from the patients, reproduced them in large numbers in the lab, and engineered them to recognize mesothelin on tumor cells, using the biologic substance called messenger RNA (mRNA). The investigators, after safeguarding viability and specificity of the engineered cells, infused the patients’ modified T cells back into their bodies.

After receiving three infusions of CARTmeso cells, the patient with mesothelioma showed stable disease, as evaluated by imaging scans. The patient with pancreatic cancer received eight infusions of CARTmeso cells, and fluid collected from his abdomen demonstrated a 40% drop in the number of tumor cells that expressed mesothelin. The researchers evaluated additional tumor markers and confirmed antitumor activity.

“We found that these CARTmeso cells not only have antitumor activity, but also act like a vaccine, and trigger a response against the patient’s own tumor,” concluded Dr. June. “This new form of CAR therapy provides a new tool to evaluate CAR therapies for solid cancers.”

During the trial, adverse events seen include an anaphylactic reaction and an intestinal obstruction.

Related Links:

Perelman School of Medicine at the University of Pennsylvania


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.