Features Partner Sites Information LinkXpress
Sign In
Demo Company

Tumor Growth Blocked in Mice by Suppressing Antioxidants in Cancer Cells

By BiotechDaily International staff writers
Posted on 11 Dec 2013
Print article
Many cancers have adapted to deal with the high levels of immune system-produced free radicals, also referred to as reactive oxygen species, by overproducing antioxidant proteins. One of these proteins, superoxide dismutase 1 (SOD1), is overproduced in lung adenocarcinomas and has been implicated as a target for chemotherapy.

In the December 2, 2013, issue of the Journal of Clinical Investigation, Dr. Navdeep Chandel and colleagues from Northwestern University (Evanston, IL, USA) reported the effects of a SOD1 pharmacologic suppressor on non-small-cell lung cancer (NSCLC) cells. The inhibitor, called ATN-224, blocked the growth of human NSCLC cells in culture, and triggered their death. The researchers also discovered that ATN-224 inhibited other antioxidant proteins, which caused high levels of hydrogen peroxide inside the cells. Cancer cells’ capability to generate hydrogen peroxide was required for ATN-224-dependent effects, because hydrogen peroxide activated cell death pathways.

ATN-224, moreover, triggered cancer cell death and decreased tumor sizes in a mouse model of lung adenocarcinoma. ATN-224-dependent effects in lab mice were enhanced when the inhibitor was used in combination with another drug that activates programmed cell death.

These new findings indicate that antioxidant suppression may be a feasible chemotherapeutic strategy.

Related Links:

Northwestern University

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.