Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Nanocarrier Designed to Target Drug Delivery to Cancer Cells

By BiotechDaily International staff writers
Posted on 13 Nov 2013
Print article
Image: The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided “Janus” surface and within its porous interior Photo courtesy of UC’s Dr. Donglu Shi).
Image: The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided “Janus” surface and within its porous interior Photo courtesy of UC’s Dr. Donglu Shi).
A novel nanostructure can, because of its dual-surface structure, serve as an improved “all-in-one tool” in the fight against cancer.

The nanostructure was developed by a team of international researchers, including those at the University of Cincinnati (UC; OH, USA), and has the potential to improve all-in-one detection, diagnoses, and drug-delivery treatment of cancer cells.

The first-of-its-kind nanostructure is remarkable because it can carry a range of cancer-fighting substance on its double-sided “Janus” surface and within its porous interior. Because of its unique structure, the nanocarrier can do all of the following: (1) Transport cancer-specific detection nanoparticles and biomarkers to a site within the body, e.g., the prostate or the breast. This promises earlier diagnosis than is possible with current applications. (2) Attach fluorescent marker materials to illuminate specific cancer cells, so that they are easier to find for treatment, whether drug delivery or surgery. (3) Deliver anticancer drugs for pinpoint targeted treatment of cancer cells, which should result in few drug side effects. Currently, a cancer treatment such as chemotherapy affects not only cancer cells but healthy cells as well, leading to serious and often incapacitating side effects.

This research’s findings were presented on October 30, 2013, at the annual Materials Science & Technology Conference in Montreal (QC, Canada). The Janus nanostructure is unusual in that, normally, these structures (much smaller than a single cell) have limited surface. This makes is difficult to carry multiple components, e.g., both cancer detection and drug-delivery materials. The Janus nanocomponent, on the other hand, has functionally and chemically distinct surfaces to allow it to carry multiple components in a single assembly and function in an intelligent manner.

“In this effort, we’re using existing basic nanosystems, such as carbon nanotubes, graphene, iron oxides, silica, quantum dots, and polymeric nanomaterials in order to create an all-in-one, multidimensional, and stable nanocarrier that will provide imaging, cell targeting, drug storage and intelligent, controlled drug release,” said UC’s Dr. Donglu Shi, adding that the nanocarrier’s potential is currently greatest for cancers that are close to the body’s surface, such as breast and prostate cancer.

If such nanotechnology can soon become the standard for cancer detection, it promises earlier, more rapid, and more effective diagnosis at lower cost than current technology. The most common technology used today in cancer diagnosis are magnetic resonance imaging (MRI); positron emission tomography (PET); and computed tomography (CT) imaging, however, they are expensive and time-consuming to use.

Furthermore, when it comes to drug delivery, nanotechnology such as the Janus structure would better regulate the drug dose, since that dose would be targeted to cancer cells. In this way, anticancer drugs could be used much more effectively, which would lower the total amount of drug administered.

Related Links:

University of Cincinnati



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.