Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Research Partnership Seeks Compounds to Slow Loss of Motor Neurons in ALS

By BiotechDaily International staff writers
Posted on 01 Oct 2013
A renowned American research institute is collaborating with a German drug discovery company to identify compounds that can prevent or slow down the loss of motor neurons, which is characteristic of the human disease amyotrophic lateral sclerosis (ALS).

ALS is a debilitating disease that induces muscle weakness and atrophy throughout the body caused by the degeneration of the upper and lower motor neurons. The majority of ALS victims die within three to five years from the onset of the symptoms, and only about 10% survive for 10 years or more. The incidence of the syndrome is approximately two per 100,000 people, and there are about 150,000 diagnosed ALS patients worldwide.

Investigators at the Harvard Stem Cell Institute (Boston, MA, USA) will be working with colleagues at Evotec AG (Hamburg, Germany) in a strategic partnership dedicated to the identification of compounds able to prevent or slow down the loss of motor neurons in ALS. The collaboration, which is being called “CureMN” (CureMotorNeuron), will leverage human motor neuron assays based on ALS patient-derived induced pluripotent stem (iPS) cells that were developed by Harvard Stem Cell Institute researchers Dr. Lee Rubin and Dr. Kevin Eggan.

Evotec is a drug discovery alliance and development partnership company focused on rapidly progressing innovative product approaches with leading pharmaceutical and biotechnology companies. Evotec has established an enviable position by assembling top-class scientific experts and integrating state-of-the-art technologies as well as substantial experience and expertise in key therapeutic areas including neuroscience, pain, metabolic diseases as well as oncology and inflammation.

Dr. Cord Dohrmann, CSO of Evotec, said, “Kevin and Lee have made significant contributions to our understanding of the underlying pathology of motor neuron diseases. Their laboratories have developed a large array of ALS patient-derived motor neuron models that allow screening of diseased human cells in culture – an approach that is sometimes referred to as a “clinical trial in a dish.” Our intention is to systematically screen for new mechanisms, targets, and compounds that have the potential to be developed into new products that will modify and ideally halt the progression of ALS and potentially other motor neuron diseases.”

Related Links:
Harvard Stem Cell Institute
Evotec AG



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.