We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cytokines Induced by Exposure to Airborne Pollutants Drive the Transition from Acute to Chronic Lung Infections

By LabMedica International staff writers
Posted on 28 Aug 2013
Print article
Image: This photomicrograph depicts airway epithelial cells from lung tissue of a COPD patient. The cell nuclei have been stained to reveal IL-33, a type of signaling molecule found at high levels in COPD patients. New research shows that viral infection can induce these cells to proliferate. Release of IL-33 from these cells promotes inflammatory mucus production. These findings provide insight into the mechanisms linking acute infection to chronic inflammatory lung disease (Photo courtesy of Holtzman Lab, Washington University School of Medicine).
Image: This photomicrograph depicts airway epithelial cells from lung tissue of a COPD patient. The cell nuclei have been stained to reveal IL-33, a type of signaling molecule found at high levels in COPD patients. New research shows that viral infection can induce these cells to proliferate. Release of IL-33 from these cells promotes inflammatory mucus production. These findings provide insight into the mechanisms linking acute infection to chronic inflammatory lung disease (Photo courtesy of Holtzman Lab, Washington University School of Medicine).
Molecular signaling molecules that link acute viral infections with the development of chronic diseases such as chronic obstructive pulmonary disease (COPD) have been identified in a mouse model and in human patient samples.

COPD is considered to be the fifth leading cause of death worldwide. It is characterized by inflammation of the lower airways and destruction of lung tissue that limit airflow and pulmonary function. While exposure to cigarette smoke is a major risk factor for COPD, response to viral infection by cells lining the airways can lead to the long-term lung inflammation and mucus production that are typical of COPD.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) had shown previously in mice with parainfluenza virus infection that innate immune cells played an unexpected role in interleukin-13 (IL-13)–dependent chronic lung disease. However, it was not known how IL-13 activity was modulated.

In the current report, the investigators demonstrated that lung levels of IL-33 were selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe COPD. IL-33 is a cytokine belonging to the IL-1 superfamily that induces helper T-cells, mast cells, eosinophils, and basophils to produce type II cytokines. IL-33 mediates its biological effects by interacting with the receptors ST2 (IL1RL1) and IL-1 Receptor Accessory Protein (IL1RAP), activating intracellular molecules in the NF-kappaB and MAP kinase signaling pathways that drive production of type II cytokines (e.g. IL-5 and IL-13) from polarized Th2 cells. The induction of type II cytokines by IL-33 in vivo is believed to induce the severe pathological changes observed in mucosal organs following administration of IL-33.

In humans with COPD, IL-33 gene expression was also associated with IL-13 and mucin gene expression, and IL-33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33.

“From this work, we now know that a respiratory viral infection leads to an increase in lung epithelial progenitor cells that are programmed for increased production of IL-33,” said senior author Dr. Michael J. Holtzman, professor of medicine at Washington University School of Medicine. “We also provided the initial evidence that an additional stress or danger, such as smoking or pollution or even another infection, could cause these cells to release IL-33, which then stimulates immune cells to produce IL-13 and in turn the airway mucus typical of COPD and related respiratory diseases. It is also possible that smoke exposure predisposes individuals to the development of these cells and, in turn, the susceptibility to exacerbation and progression of this type of disease.”

“The innate immune response is conventionally viewed as built for short- rather than long-term activation,” said Dr. Holtzman. “So the type of pathway that we identified was thought to be activated for only short periods of time. However, we found that it could be persistently activated after viral infection and became even more active with time.”

The study was published in the August 15, 2013, online edition of the Journal of Clinical Investigation.

Related Links:
Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.